بررسی تصحیح جزء تابش مدل‌های پریستلی- تیلور و پنمن به منظور برآورد تبخیر از مخازن خورشیدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 - دانش آموخته کارشناسی ارشد گروه مهندسی آبیاری و زهکشی پردیس ابوریحان دانشگاه تهران، تهران، ایران

2 استاد گروه مهندسی آبیاری و زهکشی ، پردیس ابوریحان دانشگاه تهران، تهران، ایران

چکیده

تخمین هرچه دقیق­تر تبخیر در مخازن خورشیدی گام مؤثری در برنامه­ریزی و طراحی سیستم­های آبیاری تراکمی در مناطق گرم و خشک بحساب می­آید. به­دلیل اینکه تابش رسیده به سطح تبخیر در داخل و خارج مخزن متفاوت است، برای برآورد اولیه میزان تبخیر داخل مخازن، نمی­توان از تکنیک­های رایج مورد استفاده در سطوح آزاد آب استفاده کرد. هدف اصلی از این مطالعه، اصلاح جزء تابش مدل پنمن (بعنوان مدلی ترکیبی و مبنا در تخمین تبخیر از سطوح آزاد آب) و مدل پریستلی- تیلور (به­عنوان مدل تابشی توصیه شده برای برآورد تبخیر از محیط­های بسته نظیر گلخانه­ها)، جهت برآورد شدت تبخیر از مخازن خورشیدی می­باشد. مقایسه مقادیر اندازه­گیری شده و تخمینی مدل­ها در طول دوره یکساله مطالعه، نشان داد که تصحیح جزء تابش روابط مذکور، اثر مثبتی در برآورد دقیق­تر تبخیر از مخازن خورشیدی دارند. نتایج حاکی از آن بود که مدل اصلاح شده پنمن قادر است تبخیر از مخزن را با بیش­ترین ضریب تبیین برابر (R2) 950/0 و میانگین انحراف خطای (MBE) 116/1 میلی­متر در روز و ریشه میانگین مربعات خطای (RMSE) 258/1 میلی­متر در روز تخمین بزند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Modification Priestley - Taylor and Penman Models Radiation Component to Estimate Evaporation from Solar Stills

نویسندگان [English]

  • Ahmad AhmadiNik 1
  • Ali Rahimikhoob 2
1 Former M.Sc. Student, Drainage and Irrigation Engineering, College of Aburaihan, University of Tehran., Tehran., Iran
2 Professor, Department of Irrigation and Drainage, College of Aburaihan- University of Tehran., Tehran., Iran
چکیده [English]

The more accurate estimate of evaporation in Solar Stills is considered as an important step in the planning and design of condensation irrigation system in hot and dry region. Since received radiation to evaporation surface is different inside and outside the Still, to initial estimate of evaporation in Stills, can not apply the commonly techniques used in open surface water. The main purpose of this study is modification of Penman model (as a compound and base model to estimate evaporation from open surface) radiation component and Priestley – Taylor model (as a recommended radiation model for estimating evaporation from closed environments such as greenhouses) to estimate the evaporation rate from the Solar Stills. Comparison of measured and estimated values over the one-year period of the study showed that modification the radiation component have a positive effect in more accurate estimate of evaporation from Solar Stills. The results showed that the modified Penman model is capable of estimate evaporation from Still with R2=0.950, MBE= 1.116 (mm/day) and RMSE=1.258 (mm/day).

کلیدواژه‌ها [English]

  • Condensation Irrigation System
  • Desalination
  • Penman model
  • Priestley – Taylor model
  • Saline Water
  • Solar Stills
امیدی،س و قهرمان،ب. 1387. نگرشی مجدد در مورد تأثیر شوری بر تبخیر. مجله علوم کشاورزی و منابع طبیعی. 15. 193.
علیزاده،ا. 1385. رابطه آب و خاک و گیاه. دانشگاه امام رضا. چاپ ششم.
Allen,R.G., Pereira,L.S., Raes,D., Smith,M. 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage. FAO56.
Fazlil,w.f., Boesveld,h. 2009. Evapotranspiration Models in Greenhouse. Master thesis Irrigation and Water Engineering submitted in partial fulfillment of the Master of Science degree Agricultural and Bioresearch Engineering at Wageningen University. Netherlands.
Garcia,R.L. 2002. Seawater desalination driven by renewable energies (a review). Desalination. 143. 103-113.
Gallego,B., Baille,A. Martin,B., Maestre.G.F., Martinez.V. 2012. Evaluation of evaporation estimation methods for a covered reservoir in a semi-arid climate (south-eastern Spain). Journal of Hydrology. 458–459.
Idso.S. 1981. A set de equations for full spectrum and 8 to 14 mm and 10.5 to 12.5 mm thermal radiation from cloudless skies. Water Resour. Res. 19. 295-304.
Linacre.E.T. 1993. Data sparse estimation of potential evaporation using a simplified Penman equation. Agric. Forest Meteorology. 64. 225–237.
Lindblom.J., Nordell.B. 2007. Underground condensation of humid air for drinking water production and subsurface irrigation. Desalination. 203. 417–434.
Penman.H.L. 1948. Natural evaporation from open water, bare soil and grass.  Proceedings of the Royal Society of London Series A – Mathematical and Physical Sciences. 193. 120.
Penman.H.L. 1963. Vegetation and hydrology (Technical Communication no. 53, Commonwealth Bureau of Soils, Harpenden) Commonwealth Agricultural Bureaux, Farham Royal. 124. 72.
Priestley.C.H.B., Taylor.R.J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Rev. 100. 81-92.
Rahimikhoob.A. 2009. Comparison of estimates of solar radiation from neural network models and angstrom formula for application ETo – a case study in Abureyhan Station, Iran. Applied Engineering in Agriculture.  25(5): 671-675.Shuttleworth.W.J. 1993. Evaporation. McGraw-Hill, New York. (Chapter 4). 4.1–4.53.
Valiantzas.J.D. 2006. Simplified versions for the Penman evaporation equation using routine weather data. Journal of Hydrology. 331. 690–702.
Vuscovich.M. 2001. Desarrollo de un modelo para determinar evapotranspiración en invernaderos. Tesis Magíster Scientiae. 64 p. Universidad de Concepción, Facultad de Ingeniería Agrícola, Chillán, Chile.
Ward.J.C. 1997. evaporation of wastewater from mountain Cabins. Environmental resource center. Colorado state university. Serial number 77.  121-123.