بررسی رابطه آب و هوا با عملکرد و کارایی مصرف نور در کدو پوست‎کاغذی (Cucurbita pepo L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 دانشیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 دکتری اکولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 دانشجوی دکتری اگرواکولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

تغییرات اقلیمی از عوامل مهم نوسانات رشد و عملکرد اقتصادی گیاهان در مقیاس­های زمانی و مکانی می­باشد. ارزیابی تاثیرات اقلیمی بر رشد و عملکرد محصول به منظور دست­یابی به الگوی رشد مطلوب و بالاترین عملکرد حایز اهمیت است. کدو پوست کاغذی (.Cucurbita pepo L)، گیاه مهمی به لحاظ اقتصادی است که در سرتاسر جهان برای مصارف دارویی کشت می­شود. به‎منظور بررسی اثر تغییرات سالیانه آب و هوا بر تجمع ماده خشک، عملکرد و کارایی مصرف نور (RUE) کدو پوست کاغذی از داده­های سه سال آزمایش­ زراعی (92، 91 و 1389) در مزرعه تحقیقاتی دانشگاه فردوسی مشهد استفاده شد. آنالیز آماری عملکرد و کارایی مصرف نور در کدو پوست کاغذی با متغیرهای اقلیمی شامل درجه روز رشد (GDD)، بارندگی، تابش خورشیدی، پتانسیل تبخیر و تعرق و تعداد روز با دمای حداکثر بالاتر از 32 درجه سانتی­گراد انجام شد. نتایج نشان داد که تاثیر کل بارندگی بر وزن خشک کدوی پوست کاغذی در سطح احتمال پنج درصد و تاثیر سایر متغیرها در سطح احتمال یک درصد معنی­دار بود. همچنین، تمامی متغیرهای اقلیمی نیز تاثیر معنی­دار در سطح احتمال یک درصد بر کارایی مصرف نور کدو پوست کاغذی نشان دادند. همچنین، وزن خشک کدو پوست کاغذی و کارایی مصرف نور به­ترتیب با پتانسیل تبخیر و تعرق کل و بارندگی در طول فصل رشد همبستگی قوی داشت. از این­رو، در تاریخ کشت مناسب و منطبق بر رشد کدو پوست کاغذی و در شرایط آب و هوایی مطلوب می­توان بالاترین عملکرد ممکن را فراهم آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Weather association with yield production and radiation use efficiency of Pumpkin (Cucurbita pepo L.)

نویسندگان [English]

  • Mohammad Bannayan 1
  • Morteza Goldani 2
  • Mohammad Reza Goldani 3
  • Sara Asadi 4
1 Professor, Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad
2 PhD of Ecology, Faculty of Agriculture, Ferdowsi University of Mashhad
3 PhD Student of Agroecoloy, Department of Agronomy, Ferdowsi University of Mashhad
4 PhD of Ecology, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

Climate variation is one of the major factors causing fluctuation of growth and economic yield of plants at both temporal and spatial scales. Evaluation of climate impacts on growth and yield of plants is important to achieve desirable growth pattern and highest possible yield. Pumpkin (Cucurbita pepo L.) is an economically important plant and is cultivated throughout the world for oil and medicinal purposes. The current study was conducted to investigate the impacts of annual climate variations on dry matter accumulation, yield production and radiation use efficiency (RUE) of pumpkin. The required data of pumpkin growth were collected from three years experiment (2010, 2012 and 2013) at research farm of Ferdowsi university of Mashhad. A thorough analysis was carried out between yield production and radiation use efficiency of pumpkin with climate variables (including growing degree day (GDD), precipitation, solar radiation, potential evapotranspiration and number of days with maximum temperature higher than 32 oC). This study showed that the impact of total precipitation on pumpkin dry weight was significant (P<0.05) and the effects of other variables were highly significant (P<0.01). All climate variables also showed significant (P<0.01) effect on pumpkin radiation use efficiency. The strongest correlation of pumpkin dry weight and radiation use efficiency was with total potential evapotranspiration and total precipitation during the growth season, respectively. The results proper sowing date of pumpkin which coincided the crop growth with the optimum climate conditions can enable it to achieve the highest possible yield.

کلیدواژه‌ها [English]

  • Crops and environment
  • Cucurbita pepo L
  • production
  • Pumpkin production
  • Weather and crop
عامری، ع.ا و نصیری محلاتی، م. 1387. اثرات سطوح مختلف نیتروژن و تراکم بر میزان تولید گل مواد موثره و کارایی مصرف نور در گیاه دارویی همیشه بهار (Calendula officinalis). پژوهش و سازندگی. 21.4: 133-144.
Bannayan,M and Hoogenboom,G. 2008. Weather analogue: A tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach. Environmental Modeling and Softwares. 23: 703-713.
Bannayan,M and Sanjani,S. 2011. Weather conditions associated with irrigated crops in an arid and semi arid Environment. Agricultural and Forest Meteorology. 151: 1589-1598.
Bannayan,M., Eyshi Rezaei,E and Alizadeh,A. 2011. Climatic Suitability of Growing Summer Squash (Cucurbita pepo L.) as a Medicinal Plant in Iran. Notulae Scientia Biologicae. 3: 39-46.
Bannayan,M., Sadeghi Lotfabadi,S., Sanjani,S., Mohamadian,A and Aghaalikhani,M. 2010. Effects of precipitation and temperature on crop production variability in northeast Iran. International Journal of Biometeorology. 55:387-401.
Boote,K.J and Loomis,R.S. 1991. Modeling crop photosynthesis - from biochemistry to canopy. CSSA Special Publication Number 19. Crop Science Society of America, Madison, WI.
Brant-Loy,J. 2004.Morpho-Physiological aspects of productivity and quality in Squash and Pumpkins (Cucurbita spp.). Critical Reviews in Plant Science. 23: 337-363.
Challinor,A.J., Slingo,J.M., Wheeler,T.R., Craufurd,P.Q and Grimes,D.I.F. 2003. Towards a combined seasonal weather and crop productivity forecasting system: determination of the working spatial scale. Journal of Applied Meteorology. 42: 175-192.
Chen,Y.H., Yu,S.L., Yu,Z.W. 2003. Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agronomica Sinica. 29 .5: 730-734.
Decker,W.L. 1994. Developments in agricultural meteorology as a guide to its potential for the twenty-first century. Agricultural and Forest Meteorology. 69: 9-25.
Delgado,J.A., Nearing,M.A., Rice,C.W. 2013. Conservation practices for climate change adaptation. Advances in Agronomy. 121: 47-115.
Ghaderi,F.A., Soltani,A., Sadeghipour,H.R. 2008. Cardinal temperature of germination in medicinal pumpkin (Cucurbita pepo convar. Pepo var. styriaca), Borago (Borago officinalis L.) and Black cumin (Nigella sativa L.). Asian Journal of Plant Sciences. 7: 574-578.
Gregory,P.J., Ingram,J.S.I., Brklacich,M. 2005. Climate change and food security. Philosophical Transactions of the Royal Society. 360: 2139-2148.
Hodges,T. 1998. Water and nitrogen applications for potato: commercial and experimental rates compared to a simulation model. Journal of Sustainable Agriculture. 13: 79-90.
Hoogenboom,G. 2000. Contribution of agrometeorology to the simulation of crop production and its applications. Agricultural and Forest Meteorology. 103: 137-157.
Hosseini,M., Mollafilabi,A and Nassiri,M. 2008. Spatial and temporal patterns in saffron (Crocus sativus L.) yield of Khorasan province and their relationship with long term weather variation, Iran. Field Crop Research. 6: 79–88.
Hu,Q and Buyanovsky,G. 2003.Climate effects on corn yield in Missouri. Journal of Applied Meteorology. 42: 1626-1635.
IPCC. 2007. Summary for Policy Makers. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. Cambridge University Press, Cambridge.
Jamieson,P.D., Martin,R.J., Francis,G.S and Wilson,D.R. 1995. Drought effects on biomass production and radiation-use efficiency in barley. Field Crops Research. 43: 77-86.
Jing,Q., Bouman,B., van Keulen,H., Hengsdijk,H., Cao,W and Dai,T. 2008. Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia. Agricultural Systems. 98: 177-188.
Jones,P.D., Lister,D.H., Jaggard,K.W and Pidgeon,J.D. 2003. Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Climatic Change. 58: 93-108.
Jongschaap,R.E.E. 2007. Sensitivity of a crop growth simulation model to variation in LAI and canopy nitrogen used for run-time calibration. Ecological modeling. 200: 89-98.
Jovanovic,N.Z and Annandale,J.G. 2000. Crop growth model parameters of 19 summer vegetable cultivars for use in mechanistic irrigation scheduling models. Water Southern African. 26: 67-76.
Kamal,H.A. 2011. Effect of irrigation method and quantity on squash yield and quality. Agricultural Water Management. 98(8): 1197-1206.
Kenter,C., Hoffmann,C.M and Marlander,B. 2006. Effects of weather variables on sugar beet yield development (Beta vulgaris L.). European Journal of Agronomy. 24: 62-69.
Kutcher,H.R., Warland,J.S and Brandt,S.A. 2010. Temperature and precipitation effects on canola yields in Saskatchewan, Canada. Agricultural and Forest Meteorology. 150: 161-165.
Landau,S., Mitchell,R.A.C., Barnett,V., Colls,J.J., Craigon,J., Moore,K.L and Payne,R.W. 1998. Testing winter wheat simulation models’ predictions against observed UK grain yields. Agricultural and Forest Meteorology. 89: 85-99.
Li,S., Wheeler,T., Challinor,A., Lin,E., Ju,H., Xu,Y. 2010. The observed relationships between wheat and climate in China. Agricultural and Forest Meteorology. 150: 1412-1419.
Maddonni,G.A and Otegui,M.E. 1996. Leaf area, light interception, and crop development in maize. Field Crops Research. 48: 81-87.
Marcelis,L.F.M. 1993. Fruit growth and biomass allocation to the fruits in cucumber. Effect of fruit load and temperature. Scientia Horticulturae. 54: 107-121.
Marcelis,L.F.M., Heuvelink,E and Goudriaan,J. 1998. Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae. 74: 83-111.
Mayers,J.D., Lawn,R.J., Byth,D.E. 1991. Agronomic studies on soybean [Glycine max (L.) Merrill] in the dry Season of the tropics. I. Limits to yield imposed by phenology. Australian Journal of Agricultural Research. 42: 1075-1092.
McKeown,A.W., Warland,J and McDonald,M.R. 2006. Long-term climate and weather patterns in relation to crop yield: a minireview. Canadian Journal of Botany. 84: 1031-1036.
McMaster,G.S and Wilhelm,W.W. 1997. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology. 87: 291-300.
Monteith,J.L. 1977. Climate and the efficiency of crop production in Britain. Philosophical Transaction of the Royal Society of London. 281: 277-294.
Pardossi,A., Giacomet,P., Malorgio,F., Albini,F.M., Murelli,C., Serra,G., Vernieri,P., Tognoni,F. 2000. The influence of growing season on fruit yield and quality of greenhouse melon (Cucumis melo L.) grown in nutrient film technique in a Mediterranean climate. Journal of Horticultural Science. 75 .4: 488-493.
Parry,M., Rosenzweig,C., Inglesias,A., Livermore,M., Gischer,G. 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Changes. 14: 53-67.
Pohlert,T. 2004. Use of empirical global radiation models for maize growth simulation. Agricultural and Forest Meteorology. 126: 47-58.
Rouphael,Y and Colla,G. 2005. Radiation and water use efficiencies of greenhouse zucchini squash in relation to different climate parameters. European Journal of Agronomy. 23: 183-194.
Shen,X.Y., Dai,J.Y., Hu,A.C., Gu,W.L., Zheng,B. 1993. Studies on relationship among character of canopy light interception and yield in maize populations (Zea mays L.). Acta Agronomica Sinica. 19.3: 246-252.
Sinclair,T.R and Horie,T. 1989. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Science. 29: 90-98.
Sinclair,T.R., Muchow,R.C. 1998. Radiation use efficiency. Advances in Agronomy. 65: 215-265.
Tao,F., Yokozawa,M and Zhang,Z. 2009. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new process-based model development, optimization, and uncertainties analysis. Agricultural and Forest Meteorology. 149: 831-850.
Whimeld,D.M., Smith,C.J. 1989. Effect of irrigation and nitrogen on growth, light interception and efficiency of light conversion in wheat. Field Crop Research. 20: 279-295.
Whitaker,T.W and Davis,G.N. 1962. Cucurbits. InterScience INC. New York. 10.
Zehtab-Salmasi,S. 2006. Study of cardinal temperatures for pumpkin (Cucurbita pepo) seed germination. Journal of Agronomy. 5: 95-97.