توزیع تعرق و کمبود فشار بخار در گلخانه ی تجاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی، داﻧﺸﮕﺎه ﺑﻮﻋﻠﻲ سینا

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان

3 گروه مکانیک، دانشکده مهندسی، دانشگاه بوعلی سینا

چکیده

بخش کشاورزی عمده‌ترین مصرف کننده آب در ایران است. محدودیت منابع آب منجر به استفاده از فناوری‌های جدید از جمله کشت گلخانه‌ای برای بهره‌برداری بهینه از این منابع شده است. در کشت گلخانه‌ای مدیریت شرایط اقلیمی بسیار مهم است. با هدف بررسی شرایط اقلیمی و توزیع مکانی و زمانی رطوبت (کمبود فشار بخار) و تعرق، مطالعه‌ای در گلخانه‌ای تجاری با مدیریت بهره‌بردار و وسعت 4333 مترمربع با 4 اندازه‌گیری 24 ساعته در فصل‌های سرد و گرم سال انجام شد. با توجه به مرحله رشد محصول (ارتفاع و حجم پوشش گیاهی) بین 21 تا 33 دیتالاگر دما و رطوبت نسبی داخل گلخانه را در دو ارتفاع در سطح افقی ثبت می‌کردند. بررسی توزیع کمبود فشار بخار با توجه به معیارهای موجود نشان داد با وجود مطلوب بودن دامنه میانگین کمبود فشار بخار، توزیع آن‌ در ساعات مختلف شبانه روز و در سطح گلخانه می‌تواند بسیار متغیر باشد و دامنه‌ای از شرایط نامطلوب تا مطلوب را داشته باشد. توزیع تعرق نیز تقریباً منطبق بر توزیع کمبود فشار بخار در گلخانه بود. درصد تفاوت حداکثر و حداقل تعرق تغییرات مجموع تعرق روزانه در سطح گلخانه در اندازه‌گیری‌های زمستان در سطح گلخانه 21 تا 46 و در بهار 28 درصد بود. در نتیجه بیان وضعیت اقلیمی گلخانه تنها با استفاده از میانگین پارامترهای اقلیمی بدون در نظر گرفتن توزیع مکانی (در سطح گلخانه) و زمانی (شبانه روز) آن‌ها می‌تواند سبب بروز خطا در تنظیم شرایط اقلیمی گلخانه شود. هم‌چنین شناخت تفاوت‌های مقدار و توزیع تعرق می‌تواند در بهینه کردن برنامه آبیاری با هدف افزایش کارایی و کاهش مصرف آب استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Distribution of Transpiration and Vapour pressure deficit in a Commercial Greenhouse

نویسندگان [English]

  • Seyedmoeineddin Rezvani 1
  • Hamid Zare abyaneh 2
  • Mohsen Godarzi 3
1 Department of Irrigation and Drainage, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
2 Department of Irrigation and Drainage, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
3 Department of Mechanical Engineering, Faculty of Engnirreing, Bu-Ali Sina University, Hamadan, Iran
چکیده [English]

The agricultural sector is the main water user in Iran. Water resource constraints have led to the use of new technologies, including greenhouse cultivation, for optimal utilization of these resources. Climatic conditions management is very important in greenhouse cultivation. To investigate the climatic conditions and spatial and temporal distribution of humidity (vapour pressure deficit) and transpiration, a study was carried out in a commercial greenhouse managed by the beneficiary, with an area of 4333 m2 with four 24-hours measurements in cold and warm seasons. According to growth stage (height and vegetation volume) 21-33 data loggers recorded temperature and relative humidity in two horizontal levels inside the greenhouse. The study of the distribution of vapour pressure deficit according to existing criteria showed that, despite the desirability of the average range of vapour pressure deficit, their distribution in different hours of the day and at the greenhouse level can be very variable and range from unfavorable to desirable conditions. The distribution of transpiration was almost in line with the distribution of vapor pressure loss in the greenhouse. The percentage difference between the maximum and minimum transpiration of changes in total daily transpiration at the greenhouse level in winter measurements was 21 to 46 in the greenhouse and 28% in the spring. As a result, the expression of the climate of a greenhouse only be using the average climate parameters lead to an error in the climate conditions of the greenhouse, irrespective of spatial distribution (at the greenhouse level) and time (day and night). Also, recognizing differences in the amount and distribution of transpiration can be used to optimize irrigation programming with the aim of increasing efficiency and reducing water consumption.

کلیدواژه‌ها [English]

  • Cucumber
  • homogeneity
  • humidity
  • tomato
  • uniformity
رضوانی، س.، دهقانی سانیج ح.، ,بیات ف.، زارع ابیانه، ح. 1395.  تعیین عمق و دور آبیاری برای زراعت گلخانه‌ای گوجه‌فرنگی در منطقه همدان. مجله آبیاری و زهکشی ایران . 10 . 6 : 785-770.
رضوانی، س.، سلگی، م. 1394. ارزیابی فنی و اقتصادی مصرف و بازده انرژی درکشت خیار گلخانه­‌های استان همدان. گزارش نهایی پژوهشی. موسسه تحقیقات فنی و مهندسی کشاورزی. شماره ثبت 48447.
زارعی، ق. چالش­های سازهای گلخانه­ها در ایران. 1396. مجله پژوهش­های راهبردی در علوم کشاورزی و منابع طبیعی. 2. 2: 162-149.
زارعی، ق.، سالمی، ح.، ر.، رضوانی، س. و اسفندیاری، ص. 1397. تعیین نیازآبی خیار گلخانه­ای در سطح کشور. گزارش نهایی پژوهشی. موسسه تحقیقات فنی و مهندسی کشاورزی. شماره ثبت 54247.
خوشخوی،م.، مبلی، م.، عزیزی، م.، وحدتی، ک.، گریگوریان، و.، تفضلی، ع. 1396. بررسی مسائل و مشکلات گلخانه­ها و فرآورده­های گلخانه­ای در ایران. گزارش نهایی پژوهشی.  فرهنگستان علوم جمهوری اسلامی ایران.
وزارت جهاد کشاورزی. عملکرد گلخانه­های کشور طی سال­های 93-1390. 1394. معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، تهران.
وزارت جهاد کشاورزی. گزارش اطلاعات سطح، تولید و عملکرد در هکتار محصولات باغبانی کل کشور در سال 1396. 1397. معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، تهران.
Barker, J.C., Welles, G.W.H and van Uffelen, J.A.M.1987. The effects of day and night humidity on yield and quality of glasshouse cucumbers. J Hortic Sci 62(3): 363-370.
Bakker, J.C .1990. Effects of day and night humidity on yield and fruit quality of glasshouse tomatoes (Lycopersicon esculentum Mill.). J Hortic Sci 65: 323-331.
Balendonck, J., Sapounas, A.A., Kempkes, F., Van Os, E.A., Van der Schoor, R., Van Tuijl, B.A.J and Keizer, L.C.P. 2014. Using a wireless sensor network to determine climate heterogeneity of a greenhouse environment. Acta Hort 1037: 539-546.               
Balendonck, J., Van Os, E.A., Van der Schoor, R., Van Tuijl, B.A.J and Keizer, L.C.P. 2010. Monitoring spatial and temporal distribution of temperature and relative humidity in greenhouses based on wireless sensor technology. In AgEng 2010: Towards environmental technologies, Clermont-Ferrand, France.
Bartzanas, T., Boulard, T. and Kittas, C. 2004. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosyst Eng 88(4): 479-490.
Castilla, N. 2013. Greenhouse technology and management. 2nd ed. CABI.
De Pascale, D., Stanghellini, C. 2011. High temperature control in Mediterranean greenhouse production: the constraints and the options. Acta Hort 893: 103-116.
Donatelli, M., Bellocchi, G. and Carlini, L. 2006. Sharing knowledge via software components: Models on reference evapotranspiration. EUR J AGRON 24: 186–192.
Fazlil-Ilahil, W. F. 2009. Evapotranspiration models in greenhouse. MSc, Wageningen agricultural University, Wageningen, Netherlands.
Ferentinos, K.P., Katsoulas, N., Tzounis, A., Bartzanas, T and Kittas, C. 2017. Wireless sensor networks for greenhouse climate and plant condition assessment. Biosyst Eng 153: 70-81. doi: 10.1016/j.biosystemseng.2016.11.005
Grange, R.L and Hand, D.W. 1987. A review of the effects of atmospheric humidity on the growth of horticultural crops. J Hortic Sci 62: 125–134.
Gruda, N., Sallaku, G and Balliu, A. 2017. PART III: CROP TECHNOLOGIES: 2. Cucumber. In: Baudoin W, Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., De Pascale, S., Nicola, S., Chairperson, V., Gruda, N., Urban, L and Tany, J., editors. Good agricultural practices for greenhouse vegetable production in the South East European countries: Principles for sustainable intensification of smallholder farms. Fao plant production and protection paper 230. Rome. Italy. Food and agricultural organization of the United Nations, pp. 287-299.
Holder, R and Cockshull, K.E. 1990. Effects of humidity on the growth and yield of glasshouse tomatoes. J Hortic Sci 65(1): 31-39.
Katsoulas, N., and Kittas, C. 2008. Impact of greenhouse microclimate on plant growth and development with special reference to the solanaceae. The Eur J Plant Sci Biotechnol. 2(special issue 1):31–44.
Katsoulas, N., Kittas, C and Bartzanas, T. 2012. Microclimate Distribution in a Greenhouse Cooled by a Fog System. Acta Hort 927: 773-778.
Katsoulas, N., Ferentinos, K.P., Tzounis, A., Bartzanas, T and Kittas, C. 2017. Spatially distributed greenhouse climate control based on wireless sensor network measurements. Acta Hort 1154: 111-120.
Kittas, C., Katsoulas, N., Papa, K., Thanasenaris, A and Bartzanas, T. 2012. Improvement of greenhouse microclimate distribution by means of air mixing fans. Acta Hort 927: 589-594.
Konopacki, P.J., Treder, W and Klamkowski, K. 2018. Comparison of vapour pressure deficit patterns during cucumber cultivation in a traditional high PE tunnel greenhouse and a tunnel greenhouse equipped with a heat accumulator.Span J Agric Res 16 (1): e0201.
Montero J. I., Antóna, A., Muñoza, P and Lorenzo, P.2001. Transpiration from geranium grown under high temperatures and low humidities in greenhouses. Agr. For. Meteorol.107:323-332.
Mott, K.A and Peak, D. 2010. Stomatal responses to humidity and temperature in darkness. Plant, Cell and Environment. 33: 1084–1090.
Pamungkas, A. P., Hatou, K and Morimoto, T. 2014.Evapotranspiration Model Analysis of Crop Water Use in Plant Factory System. Environ. Control Biol. Vol. 52. No. 3: 183-188.
Prenger, J.J and Ling, P.P. 2001. Greenhouse Condensation Control Understanding and Using Vapor Pressure Deficit (VPD). Fact Sheet AEX-804. The Ohio state University. Wooster OH. 4 p.
Prenger, J.J., Fynn, R.P and Hansen, R.C. 2002. A comparison of four evapotranspiration models in greenhouse environment. T ASAE45: 1779–1788.
Ponce, P., Molina, A., Cepeda, P., Lugo, E., Maccleery, B. 2015. Greenhouse design and control. 1st ed. The Netherlands: CRC Press.
Shamshiri, R., Jones, J., Thorp, K. R., Ahmad, D., Man, H.C. and Taheri, S. 2018. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. Int Agrophys 32: 287-302.
Stanghellini, C., 1987. Transpiration of greenhouse crops. An aid to climate management. Ph.D. Dissertation. Wageningen Agricultural University, The Netherlands, 150 pp.
Tüzel, Y and Öztekin, G.B. 2017. PART III: CROP TECHNOLOGIES: 1 Tomato. In: Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., De Pascale, S., Nicola, S., Chairperson, V., Gruda, N., Urban, L and Tany, J., editors. Good agricultural practices for greenhouse vegetable production in the South East European countries: Principles for sustainable intensification of smallholder farms. Fao plant production and protection paper 230. Rome. Italy. Food and agricultural organization of the United Nations, pp. 271-286.