پیش بینی ضریب مقاومت جریان در آبروهای جمع آوری آب های سطحی با شرایط مرزی متفاوت با استفاده از روش فرامدل

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی گروه آب دانشکده عمران دانشگاه تبریز

2 کارشناس ارشد مهندسی عمران گرایش آب و سازه هیدرولیکی، دانشگاه تبریز

3 گروه عمران، داتشکده فنی، دانشگاه آزاد اسلامی واحد اهر، اهر - ایران

چکیده

تخمین دقیق مقاومت جریان در لوله های انتقال آب یکی از مهمترین موضوعات در زمینه مهندسی آب و هیدرولیک می باشد. به دلیل پیچیدگی پدیده های هیدرولیکی مقاومت جریان تخمین وتعیین معادلات حاکم بر آن مشکل است. مدل های کلاسیک ریاضی در این راستا از دقت کافی برخوردار نیستند. در این مقاله با استفاده از 300 داده آزمایشگاهی ضریب زبری در لوله‌های جمع‌آوری آب باران با شرایط مرزی متفاوت (بستر صلب و بستر رسوبگذاری شده) تخمین زده شده است. سه سناریو بر اساس پارامترهای هیدرولیکی، و مشخصات ذرات رسوبی بدون و با در نظر گرفتن دبی رسوبی به عنوان پارامتر ورودی) با استفاده از روش برنامه ریز بیان ژن تخمین زده ‌شده و نرخ تأثیر پارامترهای ورودی در هر حالت مورد تجزیه ‌و تحلیل قرارگرفت. مشاهده گردید که در حالت بستر صلب مدل با پارامترهای ورودی شامل عمق نسبی جریان، اندازه بدون بعد ذرات، عدد فرود معین و دبی رسوبی و در حالت بستر رسوبگذاری شده مدل با پارامترهای ورودی عمق و عرض نسبی بستر رسوبی، عدد فرود معین دبی رسوبی نتایج مطلوب تری را ارائه می دهند. بهترین نتایج برای سری داده های آزمون برای حالت بستر رسوبگذاری شده با مقادیر R=0.9، DC=0.73 و RMSPE=10.9 بدست آمد. یکی از قابلیت های برنامه ریزی بیان ژن ارائه فرمول صریح برای ضریب زبری می باشد. لذا، برای مدل برتر سناریوهای در نظر گرفته شده روابط صریحی ارائه گردید. همچنین مطابق نتایج حاصله، آنالیز سری داده ها به صورت جداگانه منجر به جواب های دقیق تری نسبت به ترکیب داده ها گرددید.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of flow resistance coefficients in surface water transport pipe with different boundary condition via meta model

نویسندگان [English]

  • Kiyoumars Roushangar 1
  • sanam biughaghazadeh 2
  • SEYEDMAHDI SAGHEBIAN 3
1 Department Hydraulic Engineering, Faculty of Civil Engineering, Tabriz University, Iran
2 Master of Water and Hydraulic Structure Engineering, Department of Civil Engineering , University of Tabriz
3 Department of Civil Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
چکیده [English]

An accurate prediction of friction coefficient is one of the most important issues of water engineering. Due to the complexity of hydraulic phenomena and the influence of various parameters in its estimation, it is difficult to determine the governing equations and the classical mathematical models are not sufficiently accurate in this regard. In this research using 300 experimental data, the friction factor of rainwater pipes with different boundary condition (rigid and deposited beds) under three scenarios (first scenario was modeling based on the hydraulic parameters, the second and third scenarios were modeling based on the hydraulic parameters and the sediment particles characteristics without and with considering the sediment discharge as input parameter) was estimated using Gene Expression Programming (GEP) method and the impacts of different employed parameters in each boundary condition was assessed. Also it was observed that for rigid boundary state, the model including parameters of dimensionless sediment discharge, Modified Froude number, dimensionless particle number, and relative flow depth (Cv, Frm, Dgr, d50/y) and for deposited bed state, the model with parameters of relative depth and width of sediment bed, Modified Froude number, and dimensionless sediment discharge (ys/D, Frm, Wb/y0, Cv) led to more accurate outcomes. One of the capabilities of gene expression programming is providing the explicit formula for roughness coefficient. The best results was obtained for deposited bed with values of R=0.9, DC=0.73, and RMSPE=10.9. Therefore, explicit equations were presented for the superior models of the considered scenarios. Also, according to the results of analyzing data series separately lead to more accurate outcomes in compared to the mixed data and combining the data sets reduced the performance of the model.

کلیدواژه‌ها [English]

  • Flow resistance coefficient
  • Gene expression programming
  • Surface water transport pipe
  • rigid bed

فربودنام، ن.، قربانی ، م ،ع.، اعلمی ، م .ت.، 1388، پیش بینی جریان رودخانه با استفاده از برنامه ریزی ژنتیک (مطالعه موردی : حوضه آبریز رودخانه لیقوان)، مجله دانش کشاورزی، جلد 19،شماره 4.

Aytek, A., Kişi, O., )2008(. A genetic programming approach to suspended sediment modelling. Journal of   hydrology, 351, 288-2.

Brutin, D., Tadrist, L.,(2003). “Experimental Friction Factor of a Liquid Flow in Micro-tubes,” Physics of Fluids, vol. 15, pp.653-661.

Celata, P. G., Cumo, M., Guglielmi, M. and Zummo, G.,(2002). “Experimental Investigation of Hydraulic and Single-phase Heat Transfer in 0.130-mm Capillary Tube,” Microscale Thermo physical Engineering, 6, 85-97.

Ferria, C., (2001) , “Genetic representation and genetic neutrality in gene expression programming”, advances in Complex Systems,  5, 389-408.

Ghajar, A. J., Tang, C. C., and Cook, W. L., (2010). “Experimental Investigation of Friction Factor in the Transition Region for Water Flow in Mini tubes and Micro tubes.” Heat Transfer Engineering, Vol. 31,646-657.

Ghani A., 1993. Sediment Transport in Sewers. Ph.D Thesis, University of Newcastle Upon Tyne, UK.

Kandlikar, S. G., Joshi. S., and Tian, S. R., (2003). "Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes." Heat Transfer Engineering, 24, 4-16.

Lopes, H. S., weinert, W.R ., (2004). “EGYPSYS: An enhanced gene expression programming approach for symbolic regression problem”, International journal of Applied mathematics and computer Science, 14, , 375-384.

 

May R. W. P., Brown P. M., Hare G. R. & Jones K. D. 1989 Self-cleansing conditions for sewers carrying sediment. Report SR 221. Hydraulics Research Ltd., Wallingford, England.

Roushangar K., Akhgar S., Salmasi F. & Shiri J. 2014 Modeling energy dissipation over stepped spillways using machine learning approaches. Journal of Hydrology, 508, 254-265.

Singh, A., (2011)“Experimental Investigation of Friction Factor in Micro tubes and Development of Correlations for Prediction of Critical Reynolds Number.” MS thesis, Oklahoma State University.

Tam, H. K., Tam, L. M., Ghajar, A. J., Ng, W. S., Wong, I. W., Leong, K. F., and Wu, C. K., (2011).“The Effect of Inner Surface Roughness and Heating on Friction Factor in Horizontal Micro Tubes”, ASME-JSME-KSME Joint Fluids Engineering Conference, Japan.

Yıldırım, G., and Ozger, M. (2009). “Determining turbulent flow friction coefficient using adaptive neuro fuzzy computing technique.” Advances in Eng. Software, 40, 281-287.

Yildirim, G., and Ozger, M. (2009). “Neuro-fuzzy approach in estimating Hazen–Williams friction coefficient for small-diameter polyethylene pipes.” Advances in Eng. Software, 40, 593-599.

Yuhong, Z., and Wen x in., H... (2009). “Application of artificial neural network to predict the friction factor in open channel flow.” Commun Nonlinear Sci. Numer Simulate, 14,2373-2378