Evaluation of cotton yield and yield components under different irrigation quantities and frequencies in transplanting delayed cotton cultivation

Document Type : Original Article


1 Water Engineering

2 Water Engineering Department, College of Soil and Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Cotton Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Gorgan, Iran

4 Water Engineering Department, Tarbiat Modares University, Tehran, Iran


Considering the importance of cotton in crop rotation and the decreasing trend of its cultivation area in recent years, it is necessary to use efficient and optimized methods to increase the cultivation area and the amount of production of this strategic crop and to reduce its production costs. One of these methods is the delayed cotton cultivation of premature cultivars in the form of transplanting. Considering the important role of time management and irrigation in cotton cultivation, it is necessary to determine the optimal amount of water consumed by this plant in the delayed cultivation method. This research was carried out in a split plot design by randomized complete block design with three replications. Irrigation interval treatments (including irrigation after 70, 105 and 140 mm cumulative evaporation from the evaporation pan) as main plots and different irrigation water amounts (including 50, 75, 100 and 125% of evaporated water from the pan) as subplots were considered. The results showed that the treatment of irrigation after 105 mm evaporation from the pan had the highest yield, bolting percentage, water use efficiency and lint content, and yielded higher yields of 11 and 40% than 70 and 140 mm treatments, respectively. While 100% water treatment with 2016 kg/ha had the highest yield among irrigation depth treatments, the difference between treatments with 50 and 125% was not significant in 5% level in Duncan test. On the other hand, with increasing water depth, water use efficiency decreased, in such a way that 50% water treatment had the highest water use efficiency. Finally, according to the evaluation results of performance, yield components, and water use efficiency, the best treatment was irrigating after 105 mm evaporation from the pan with depth of 50%.


سهرابی مشک‌آبادی، ب. ۱۳۸۴. بررسی تأثیر آبیاری قطره‌ای بر مقدار آب مصرفی و خصوصیات کمی و کیفی پنبه. انتشارات موسسه تحقیقات پنبه کشور، گزارش نهایی طرح تحقیقاتی، شماره ثبت ۸۴/۲۹۲ مورخ ۶/۴/۱۳۸۴.
سهرابی مشک‌آبادی، ب.، فتحی، د.، کوچک‌زاده، م. ۱۳۹۰. بررسی اثر رژیم‌های مختلف آب آبیاری و کود نیتروژن بر عملکرد و اجزای عملکرد پنبه در روش‌های آبیاری بارانی و شیاری. مجله الکترونیک تولید گیاهان زراعی، ۴(۱)، ۶۱-۷۴.
حمیدی، آ. 1389. شناسایی و ثبت ارقام پنبه با استفاده از خصوصیات مورفولوژیکی. مؤسسه تحقیقات ثبت و گواهی بذر و نهال.
خدابنده، ن. ۱۳۷۲. زراعت گیاهان صنعتی. چاپ چهارم، مرکز نشر سپهر، ۴۵۴ ص.
دهقانی، م، جعفرآقایی، م.، محمدی کیا، ص. 1393، تاثیر نشاکاری بر عملکرد پنبه و کارایی مصرف آب آبیاری. نشریه پژوهش آب و آبیاری در کشاورزی. ب، 28(2)، 307-314.
رضایی، ع.، کامکار حقیقی، ع.ا. 1388. اثر تنش رطوبتی در مراحل مختلف رشد بر عملکرد گیاه لوبیا چشم‌بلبلی. پژوهش‌های خاک (علوم آب و خاک). 23(1): 1-5.
عرب‌زاده، ب.، توکلی، ع. 1384. به‌گزینی مدیریت کم‌آبیاری تنظیم‌شده در کشت نشایی برنج. علوم کشاورزی و منابع طبیعی، 12(4): 11-20.
قربانی، ق. 1383. گزارش نهایی طرح تحقیقاتی تأثیر کم‌آبیاری در مراحل مختلف رشد بر خواص کمی و کیفی پنبه. انتشارات مؤسسه تحقیقات پنبه کشور. 34 ص.
قربانی، ق. 1385. گزارش نهایی طرح تحقیقاتی تعیین دور و عمق مناسب آب آبیاری در کشت دوم پنبه. انتشارات مؤسسه تحقیقات پنبه کشور. 31 صفحه.
قربانی، ق. 1387. گزارش نهایی طرح تحقیقاتی کشت تأخیری پس از برداشت کلزا. انتشارات مؤسسه تحقیقات پنبه کشور. 36 ص.
کوچکی، ع. 1364. زراعت در مناطق خشک، انتشارات جهاد دانشگاهی مشهد.
Braunack M. V, M.P. Bange, D.B. Johnston (2012) Can planting date and cultivar selection improve resource use efficiency of cotton systems? Field Crops Research, Vo.
Bronson, K. F., Booker, J. D., Bordovsky, J. P., Keeling, J. W., Wheeler, T. A., Boman, R. K., ... and Nichols, R. L. 2006. Site-specific irrigation and nitrogen management for cotton production in the Southern High Plains. Agronomy Journal, 98(1), 212-219.
Dong, H.Z., Zhang, D.M., Tang, W., Li, W.J., and Li, Z.H. 2005. Effects of planting system, plant density and flower removal on yield and quality of hybrid seed in cotton. Field Crops Res. 93, 74-84.
English, M. and Raja. S.N. 1996. Review perspective on deficit irrigation. Agricultural Water Management, 32: 1-14.
International Cotton Advisory Committee, Cotton review of the world situation. 2018. 71(3), 1-19.
Karve, A.D. 2003. High yield of rainfed cotton through transplanting. Curr. Sci. 84, 974-975.
Kelley, M. and Keeling W. 2011. Cotton Irrigation Termination. Cotton and Texas Agri Life Research Systems. 4pp.
McConnell, J.S., Baker, W.H. and Kirst, R.C. 2000. Long-term irrigation methods and nitrogen fertilization rates in cotton production: The last five years. In: W.E. Sabbe (ed.). rkansas soil fertility 1999. University of Arkansas, Agricultural experiment station research series 471, 63-67.
Mitchell J.P., Klonsky K.M., Miyao E.M., Hembree K.J. 2009. Conservation Tillage omatoProduction in California’s San Joaquin Valley. UC ANR Pub 8330. Oakland, CA.
Onder, D., Akiscan, Y., Onder, S. and Mert, M. 2009. Effect of different irrigation water level on cotton yield and yield components. African Journal of Biotechnology. 8(8), 1536-1544.
Price A.J. 2010. Planting and defoliation timing impacts on cotton yield and quality. Beltwide Cotton Conferences, New Orleans, Louisiana, January 4-7.
Radin, J.W., Mauney, J.R. and Kerridge, D.C. 1984. Water uptake by cotton roots during fruit filling in relation to irrigation frequency. Crop Sic. 29, 1000-1005.
Wang, M., Wang, Q., and Zhang, B. 2019. A Grafting Technique for Efficiently Transplanting Transgenic Regenerated Plants of Cotton. In Transgenic Cotton (pp. 195-198). Humana Press, New York, NY.
Xiang, Y., Zou, H., Zhang, F., Qiang, S., Wu, Y., Yan, S., ... and Wang, X. 2019. Effect of Irrigation Level and Irrigation Frequency on the Growth of Mini Chinese Cabbage and Residual Soil Nitrate Nitrogen. Sustainability. 11(1): 111.
Zhang, D., Luo, Z., Liu, S., Li, W., & Dong, H. 2016. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Research, 197, 1-9.
Zhou, X.Y., Zheng, F., Li, H.G., Lu, C.L., 2010. An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42, 1070-1074.
Volume 13, Issue 6 - Serial Number 78
January and February 2020
Pages 1651-1660
  • Receive Date: 10 June 2019
  • Revise Date: 27 August 2019
  • Accept Date: 13 December 2019
  • First Publish Date: 21 January 2020