The effects of the policies of increasing the price of irrigation water and reducing available water on the water productivity of crops (Case Study: Shahdad County, Kerman City)

Document Type : Original Article

Authors

1 Graduate Student, Department of Agricultural Economics, Faculty of Agriculture, Shahid Bahonar University of Kerman

2 Assistant Professor, Department of Agricultural Economics, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.

3 Associated Professor, Department of Agricultural Economics, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Water is one of the factors limiting the development of the countryʼs agricultural economy and the appropriate way of allocating this input among different activities of agriculture is one of the main goals of agricultural sector policy makers in order to improve its efficiency and effectiveness. The water economic productivity of crops can be considered as an appropriate measure to identify the appropriate water allocation policy for each region.Therefore, the purpose of this study was to investigate the effects of policies on increasing the price of irrigation water (through increased extraction costs) and reducing available water (through blocking unauthorized wells and installing the meter on agricultural wells) on the water economic productivity index of the main crops of the Shahdad county located in Kerman city.The data and statistics were collected using random sampling and distribution of questionnaires among 106 farmers in Shahdad county. To investigate the effects of water management policies, the PMP model and the NPBD index for calculating the water economic productivity of agricultural crop was used. The results of calculating the NPBD index showed that among the selected crops, garlic crop with 10,025 Rials per cubic meter has the most economic water productivity. Also, the policy of reducing water availability had the least effect on the economic water productivity index of garlic product, by 18.64%. In addition, the mentioned policy, imposes the least economic losses on farmers in the region. It is suggested that before applying the policies of increasing the price of irrigation water and reducing available water consider the effects and consequences of these policies on the water productivity of crops in the region.

Keywords


1- حیدری، ن. 1393. ارزیابی شاخص بهره‏وری آب کشاورزی و عملکرد سیاست‏ها و برنامه‏های مدیریت آب کشور در این زمینه. فصلنامه مجلس و راهبرد. 21. 78: 199-177.
2- خواجه‏پور، ا.، کیخا، ا.ع.، سلطانی، غ.ر.، صبوحی صابونی، م و کیانی‏راد، ع. 1391. الگویی برای بیمه عرضه آب برای محصولات کشاورزی. پژوهشنامه بیمه. 28. 3: 146-125.
3- دهقانی، ع. 1397. آثار سیاست‏های قیمتی و غیرقیمتی آب آبیاری بر الگوی کشت و سود ناخالص کشاورزان بخش شهداد (شهرستان کرمان). پایان‏نامه کارشناسی ارشد اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان.
4- زارع مهرجردی، م.ر. 1386. ارزش‏گذاری آب‏های زیرزمینی در بخش کشاورزی: مطالعه موردی شهرستان کرمان. رساله دکتری اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس.
5- سیدان، س.م.، قدمی فیروزآبادی، ع و دهقانی‏سانیچ، ح. 1397. بررسی عوامل مؤثر بر ارتقا بهره‏وری آب محصولات زراعی در استان همدان. نشریه آبیاری و زهکشی ایران. 12. 4: 787-775.
6- قرقانی، ف.، بوستانی، ف و سلطانی، غ.ر. 1388. بررسی تأثیر کاهش آب آبیاری و افزایش قیمت آب بر الگوی کشت با استفاده از روش برنامه‏ریزی ریاضی مثبت: مطالعه موردی شهرستان اقلید در استان فارس. مجله تحقیقات کشاورزی. 1: 74-57.
7- کریمی، م و جلینی، م. 1395. بررسی شاخص‏های بهره‏وری آب کشاورزی در محصولات مهم زراعی، مطالعه موردی: دشت مشهد. نشریه آب و توسعه پایدار. 4. 1: 138-133.
8- محمودی، ا و کریمی، ه. 1394. ارزش‏گذاری اقتصادی آب برای مزارع بزرگ و کوچک گندم (مطالعه موردی: شهرستان طبس). مجله اقتصاد کشاورزی و توسعه. 25. 100: 19-1.
9- Araya, A., Prasad, P.V.V., Gowda, P.H., Kisekka, I and Foster, A.J. 2019. Yield and water productivity of winter wheat under various irrigation capacities. Journal of the American Water Resources Association. 55: 24-37.
10- Cortignani, R and Severini, S. 2009. Modeling Farm-Level Adoption Deficit Irrigation Using Positive Mathematical Programming. Agricultural Water Management. 96.1: 1785-1791.
11- Donghao, L., Taisheng, D., Qing, S and Yue, C. 2019. The key driving factors of irrigation water productivity based on soil spatio-temporal characteristics. Agricultural Water Management. 216: 351-360.
12- http://www.irimo.ir
13- https://www.mporg.ir
14- Howitt, RE., Medellin-Azuara, J., MacEwan, D and Lund, R. 2012. Calibrating disaggregate economic models of agricultural production and water management. Science of the Environmental Modeling and Software. 38: 244-258.
15- Louise, H. c., Thomas, J.T., Kendall, C.D., Huihui, Z and Sean, M.G. 2019. Water productivity under strategic growth stage-based deficit irrigation in maize. Agricultural Water Management. 212: 433-440.
16- Mugural, I.J., Diana, E.D and Vasile, A.S. 2015. An ex-ante impact assessment of the common agricultural policy reform in the North-Western Romania. Agricultural Economics. 61.2: 88-103.
17- Djumaboev, K., Manthrithilake, H., Ayars, J., Yuldashev, T., Akramov, B., Karshiev, R and Eshmuratov, D. 2019. Growing cotton in Karshi Steppe, Uzbekistan: water productivity differences with three different methods of irrigation. In Indian National Committee on Surface Water (INCSW) - CWC.391-397.