Evaluation the effects of periodic water stress on yield and water productivity on Quinoa

Document Type : Original Article

Authors

1 PhD student, Water Engineering Department, ّFaculty of Agriculture, Ferdowsi University of Mashhad.

2 Department of Agronomy, Faculty of Agriculture, Ferdowsi university of Mashhad, Mashhad, Iran.

3 Faculty of Natural Resources and Environment Ferdowsi University of Mashhad Mashhad, Iran

Abstract

The objective of this work was to evaluate the effects of periodic water stress on yield and yield components of Quinoa in the experimental research under greenhouse conditions. This research was conducted to study the effect of water stress on yield and yield components of Quinoa in the experimental research greenhouse of the Ferdowsi University of Mashhad during 2018-19. NQRC cultivar of Quinoa was planted and experimental design was completely randomized with five treatments and four replications. Treatments were full irrigation in all growth stages, water stress in a vegetative stage, water stress in flowering stages, water stress in the grain filling stage and deficit irrigation in all growth stage treatment with supplemental irrigation in time of planting. Results showed that the effect of periodic water stress on leaf number, leaf panicle, panicle length, stem diameter, plant height, SPAD index, 1000 kernel weight, grain yield, and water productivity were highly significant (P>0.01), but different irrigation regimes on branches number and panicle width were significant at 5 % levels. Results showed that the highest 1000 kernel weight (3.99 g), grain yield (21.2 g) and plant height (67.9 cm) were in full irrigation in all growth stage treatment and the highest water productivity (2.14 kg/m3) was in deficit irrigation in all growth stage treatment. With 50% reduction of water in vegetative stage, flowering stage, grain filling staged and deficit irrigation in all growth stage compared to full irrigation in all growth stage treatment, 1000 kernel weights were decreased by 19.0, 9.0, 4.5, and 26.6 % and Grain yield was decreased by 19.3, 11.8, 7.5 and 21.2% respectively.

Keywords


پیری، ح، انصاری، ح و پارسا، م. 1397. تعیین تابع تولید آب- شوری- عملکرد با در نظر گرفتن زمان برداشت علوفه و ارزیابی شاخص‌های تولید در ذرت خوشه‌ای. مهندسی منابع آب. 11(3): 15-26.
جمالی، ص. 1395. بررسی اثر توام سطوح مختلف شوری و کم‌آبیاری بر عملکرد و اجزای عملکرد گیاه کینوا. پایان‌نامه کارشناسی ارشد آبیاری و زهکشی. دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
حسین‌زاده، ج.، کاظمیان، ف.، جوادی، ا و غفوری، ه. 1392. زمینه و سازوکارهای مدیریت آب کشاورزی در دشت تبریز. دانش آب و خاک. 23(2): 98-85.
حیدری، م و میری‌آزادمینایی، ح.ر. 1392. فعالیت آنتی اکسیدان و ترکیبات بیوشیمیایی گیاه گلوزبان اروپایی در واکنش به تیمارهای تنش خشکی و اسیدهیومیک. تنش‌های محیطی در علوم زراعی. 2(6): 170-159.
حیدری، ن.، پوریوسف، م و توکلی، ا. 1393. تأثیر تنش خشکی بر فتوسنتز، پارامترهای وارسته به آن و محتوای نسبی آب گیاه آنیسون. مجله پژوهش‌های گیاهی (مجله زیست شناسی). 27(5).
رجبی، ع.، شریفان، ح.، حسام، م و ذاکری‌نیا، م. 1395. بررسی تأثیر سطوح مختلف شوری و آب آبیاری برعملکرد و برخی ویژگی‌های برگ اسفناج. دومین کنگره ملی آبیاری و زهکشی ایران. دانشگاه صنعتی اصفهان. اصفهان. ایران
رضایی‌نژاد، ع،. فیضیان، م و سپهوند، ک. (1392). تأثیر تنش کم‌آبی بر رشد، عملکرد، میزان و ترکیب‌های اسانس شمعدانی معطر. فن‌آوری تولیدات گیاهی، دوره 5 (1): 83-94.
سپهوند، ن.ع.، سرهنگی، م.، مهرابی، ا و مصطفوی، خ. 1394. بررسی تنوع ژنتیکی مورفوتیپ‌های کینوا با استفاده از نشانگر مولکولی ریزماهواره. ژنتیک نوین. 10(1): 115-122.
شایان نژاد، م و محرری، ع. 1389. تأثیر تنش آبی بر خصوصیات کیفی و گندم و سیب زمینی در شهرکرد. پژوهش آب در کشاورزی. 24: 70-66.
شریفان، ح.، جمالی، ص و سجادی، ف. 1397. بررسی اثر سطوح مختلف شوری بر برخی خصوصیات مورفولوژیکی گیاه کینوا تحت رژیم‌های مختلف آبیاری. علوم آب و خاک. 22(2): 15-27.
نعمتی، ا.، رفیعی الحسینی، م و دانش‌شهرکی، ع.ا. 1395. تأثیر کود دامی و تلقیح باکتریایی بر شاخص‌های فیزیولوژیک، عملکرد و اجزای عملکرد نخود تحت شرایط تنش خشکی. تنش‌های محیطی در علوم زراعی. 9(4): 339-351.
نوریانی، ح. 1392. اثر تنش کمبود آب بر عملکرد و اجزای عملکرد دانه ماش در تراکم‌های مختلف کاشت. فیزیولوژی گیاهان زراعی. 5(18): 47-35.
Al-Naggar A.M.M., El-Salam R.A., Badran A.E.E and El-Moghazi, M. M. 2017. Drought tolerance of Five Quinoa (Chenopodium quinoa Willd.) Genotypes and Its Association with Other Traits under Moderate and Severe Drought Stress. Asian Journal of Advances in Agricultural Research. 3(3): 1-13.‏
Aly A.A., Al-Barakah F.N and El-Mahrouky, M.A. 2018. Salinity Stress Promote Drought Tolerance of Chenopodium Quinoa Willd. Communications in Soil Science and Plant Analysis. 49(11): 1331-1343.‏
Aziz A., Akram N.A and Ashraf M. 2018. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry. 123: 192-203.‏
Benlloch-Gonzalez, M., Quintero, M., Manuel, J., Mateo, G., Fournier, J.M and Benlloch, M. 2015. Effect of water stress and subsequent re-watering on K+ and water flows in sunflower roots: A possible mechanism to tolerate water stress. Environmental and Experimental Botany. 118: 78-84.
Clarke, L.D and West, N.E. 1969. Germination of Kochia americana in relation to salinity. Journal of Range Management Archives. 88: 286-287.
Duysen, M.E and Freeman, T.P. 1974. Effects of moderate water deficits on wheat seedling growth and plastid pigment development. Plant Physiology. 3: 262-266.
Emam, Y., Ranjbari, A and Bohrani, M.J. 2007. Evaluation of grain yield and its components in wheat genotypes under drought stress condition after anthesis. Journal Agriculture Natural Resource Science Technology. 11: 317-327.
Fisher, R.A and Maurer, R. 1988. Drought resistance in spring wheat cultivars I: grain yield responses. Australian Journal of Agriculture Research. 29: 897 – 912.
Geerts S., Mamani R. S., Garcia M and Raes, D. 2006. Response of quinoa (Chenopodium quinoa Willd.) to differential drought stress in the Bolivian Altiplano: Towards a deficit irrigation strategy within a water scarce region. In Proceedings of the 1st International Symposium on Land and Water Management for Sustainable Irrigated Agriculture. Adana Turkey.
González-Teuber, M., Urzúa, A., Plaza, P and Bascuñán-Godoy, L. 2018. Effects of root endophytic fungi on response of Chenopodium quinoa to drought stress. Plant ecology 219(3): 231-240.‏
Husain, S., Munns, R and Condon, A.G. 2003. Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Australian Journal of Agricultural Research. 54:589–597.
Iqbal H., Yaning C., Waqas M., Shareef M and Raza S.T. 2018. Differential response of quinoa genotypes to drought and foliage-applied H2O2 in relation to oxidative damage, osmotic adjustment and antioxidant capacity. Ecotoxicology and environmental safety. 164: 344-354.‏
Jacobsen, S.E., Monteros, C., Christiansen, J. L., Bravo, L.A., Corcuera, L.J and Mujica, A. 2005. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European journal of Agronomy. 22: 131–139.
Jacobsen S.E., Liu, F and Jensen, C.R. 2009. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae. 122(2): 281-287.
James, R.A., Rivelli, A.R., Munns, R and von Caemmerer. S. 2002. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology. 29:1393–1403.
Jayme-Oliveira A., Ribeiro Júnior, W.Q., Ramos, M.L.G., Ziviani, A.C and Jakelaitis, A. 2017. Amaranth, quinoa, and millet growth and development under different water regimes in the Brazilian Cerrado. Pesquisa Agropecuária Brasileira. 52(8): 561-571.‏
Khorasaninejad, S., Alizadeh Ahmadabadi, A and Hemmati, K. 2018. The effect of humic acid on leaf morphophysiological and phytochemical properties of Echinacea purpurea L. under water deficit stress. Scientia Horticulturae. 239: 314-323.‏
Kolenc, Z., Vodnik, D., Mandelc, S., Javornik, B., Kastelec, D and Čerenak, A. 2016. Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology. Plant physiology and biochemistry. 105: 67-78.‏
Molden, D., Murry-Rust, H., Sakthivandival, R and Makin, I. 2001. A water productivity framework for understanding and action. Workshop on Water Productivity. Wadduwe, Sri Lanka, 12 -13 November.
Richards, R.A., Condon, A.G., Rebetzke, G.J., Reynolds, M.P., Ortiz-Monasterio, J.I and McNab, A. 2001. Application of Physiology in Wheat Breeding. 240pages.
Rostami, M., Mirzaei, R and Kafi, M. 2003. Assessment of drought resistance in four safflower (Carthamus tinctorius L.) cultivars at the germination stage. 7th International Conference on the Development of Drylands, 14-17 September 2003, Tehran, Iran.
Safavi, H. R and Esmikhani, M. 2013. Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms. Water Resource Management. 27(7): 2623-2644.