اندازه‌گیری و شبیه‌سازی جریان آب و جذب ریشه در خاک تحت سامانه آبیاری قطره‌ای زیرسطحی درخت سیب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه مهندسی آب، دانشگاه ارومیه

2 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه

3 دانشیار گروه مهندسی آب، پژوهشکده مطالعات دریاچه ارومیه، دانشگاه ارومیه، ارومیه، ایران

4 دانش‌آموخته دکتری آبیاری و زهکشی دانشگاه ارومیه، سازمان جهاد کشاورزی استان اردبیل

چکیده

این تحقیق با هدف اندازه‌گیری جریان آب در خاک و جذب آب ریشه در یک پلات 2 × 2 متر در یک باغ سیب 15 ساله تحت سامانه آبیاری قطره‌ای زیرسطحی در شهرستان میاندوآب انجام و با سناریوهای مختلف در نرم‌افزار HYDRUS-2D شبیه‌سازی شد. قطره‌چکان‌ها در عمق 30 سانتی‌متری و به فاصله 1 متر از تنه درخت نصب گردیدند. رطوبت حجمی خاک با استفاده از دستگاه TDR به صورت روزانه به مدت 4 ماه اندازه‌گیری شد. به منظور واسنجی معادلات روابط جذب آب ریشه، نمونه‌هایی از ریشه به همراه خاک از نقاط مختلف در محدوده توسعه برداشت شد. نتایج نشان داد بیشترین و کمترین مقدار جذب آب ریشه به ترتیب به میزان 129/0 و 024/0 سانتی‌متر مکعب بر سانتی‌متر مکعب در مختصات (عمقی ، شعاعی) (50 ، 60) سانتی‌متر و (75 ، 150) سانتی‌متر از تنه درخت اتفاق افتاد. همچنین، حدود 81 درصد جذب آب ریشه از عمق 50-0 سانتی‌متری صورت گرفت. مقادیر RMSE (0193/0 – 0141/0) نشان داد نرم‌افزار HYDRUS-2D تخمین مناسبی از رطوبت حجمی خاک را در سامانه آبیاری قطره‌ای زیرسطحی داشت. مقایسه سناریوهای مختلف شبیه‌سازی شده در HYDRUS-2D با نتایج اندازه‌گیری‌های مزرعه‌ای نشان داد با کاهش دبی قطره‌چکان به میزان 2 لیتر بر ثانیه و افزایش مدت زمان آبیاری ( با حجم آب کاربردی یکسان) جذب آب ریشه به میزان 08/5 درصد افزایش و نفوذ عمقی به میزان 18/2 درصد کاهش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree

نویسندگان [English]

  • Ehsan Nazari 1
  • Sina Besharat 2
  • Kamran Zeinalzadeh 3
  • Adel Mohammadi 4
1 Ph.D. student of Department of Water Engineering, Urmia University
2 Associate Professor, Department of Water Engineering, Faculty of Agriculture, Urmia University
3 Associate Professor, Department of Water Engineering, Urmia Lake Research Institute, University of Urmia., Urmia., Iran.
4 Ph.D. in irrigation and drainage, Ardabil Agricultural Jihad Organization
چکیده [English]

This study was conducted to measure water flow and root uptake under the soil in a 2 m × 2 m plot around an apple tree 15 years old under subsurface drip irrigation in Miandoab region and simulated by different scenarios in HYDRUS-2D software. The emitters were installed at a depth of 30 cm and a distance of 1 m from the trunk of tree. The soil water content was measured daily using a TDR device for 4 months. In order to calibrate of root water uptake equations, samples from root and soil were collected from different parts of root development zone. The results showed that the highest and lowest amount of root water uptake were 0.129 and 0.024 cm3.cm-3, respectively, that occurred in the coordinates (radial, deep), (60 cm, 50 cm) and (150 cm, 75 cm) from the tree trunk, respectively. Approximately 81% of root water uptake was at a depth of 0-50 cm. The amounts of RMSE (0.0141- 0.0193), showed that, the HYDRUS-2D software can have an appropriate estimate from soil water content in subsurface drip irrigation. Comparison of different scenarios simulated in HYDRUS-2D with the results of field measurements showed that by reducing the emitter discharge by 2 lit/h and increasing the irrigation duration (in the constant amount of water used), the root water uptake increased by 5.08% and deep penetration decreased by 2.18% compared to actual condition.

کلیدواژه‌ها [English]

  • Emitter
  • Subsurface drip irrigation
  • Root uptake
  • HYDRUS-2D software
Abu-Zreig, M and Atoum, M.F. 2004. Hydraulic characteristics of clay pitchers produced in Jordan. Can. Biosyst. Eng. 46: 15–20.
Al-omran, A. M., Al-Harbi, M. A., Wahb-Allah, M. A., Alwabel, M., Nadeem, M and Al-Eter, A. 2012. Management of Irrigation Water Salinity in Greenhouse Tomato Production under Calcareous Sandy Soil and Drip Irrigation. J. Agri. Sci. Tech. 14(4): 939-950.
Al-Omran, A. M., Al-Harbi, A. R., Wahb- Allah, M. A., Nadeem, M and Eleter, A. 2010. Impact of Irrigation water quality, Irrigation Systems, Irrigation Rates and Soil Amendments on Tomato Production in Sandy Calcareous Soil. Turk. J. Agric. For. 34: 59 –73.
Autovino, D., Rallo, G and Provenzano, G. 2018. Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agric. Water Manag. 203: 225-235.
Azad, N., Behmanesh, J., Rezaverdinejad, V., Abbasi, F and Navabian, M. 2018. Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements. Agric. Water Manag. 208: 344–356. https://doi.org/10.1016/j.agwat.2018.06.030.
Bainbridge, D.A. 2001. Buried clay pot irrigation: a little known but very efficient traditional method of irrigation. Agric. Water Manag. 48, 79–88. Batchelor, C., Lovell, C., Murata, M. 1996. Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens. Agric. Water Manag. 32: 37–48.
Besharat, S., Nazemi, A.H and Sadraddini, A.A. 2010. Parametric modeling of root length density and root water uptake in unsaturated soil. Turk. J. Agric. For. 34: 439-449. doi:10.3906/tar-0905-39
Cai, Y., Wu, P., Zhang, L., Zhu, D., Chen, J., Wu, S and Zhaoa, X. 2017. Simulation of soil water movement under subsurface irrigation with porous ceramic emitter. Agric. Water Manag. 192: 244–256.
Costa, J.M., Ortuno, M.F and Chaves, M.M. 2007. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology. 49: 1421–1434. 
Cote, C.M., Birstow, K.L., Charlesworth, P.B., Cook, F.J and Thorburn, P.J. 2003. Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrig. Sci. 22 (3–4): 143–156.
Elmaloglou, S and Diamantopoulos, E. 2009. Simulation of soil water dynamics under subsurface drip irrigation from line sources. Agric. Water Manag. 96: 1587-1595.
Feddes, A., Kowalik, P.J and Zaradny, H. 1978. Simulation of field water use and crop yield. Wiley, New York.
Honari, M., Ashrafzadeh, A., Khaledian, M., Vazifedoust, M and Mailhol, J.C. 2017. Comparison of HYDRUS-3D soil moisture simulations of subsurface drip irrigation with experimental observations in the south of France. J. Irrig. Drain. Eng. 04017014: 1-7. doi: 10.1061/(ASCE)IR.1943-4774.0001188.
Khalifa, H.E., El-Gindy, A.M., Sharaf, G.A and Allam, K.h.A. 2004. Simulating water movement in sandy soil under surface point source emitter, I. model development. Misr. J. Ag. Eng. 21(2): 341–361.
Kandelous, M.M., Simunek, J., van Genuchten, M.T.h and Malek, K. 2011. Soil water content distributions between two emitters of a subsurface drip irrigation system. Soil. Sci. Soc. Am. J. 75(2): 488–497.
Kandelous, M.M and Simunek, J. 2010a. Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation. Irrig. Sci. 28(5): 435–444
Kandelous, M.M and Simunek, J. 2010b. Numerical simulations of water movement in a subsurface drip irrigation system under field andlaboratory conditions using HYDRUS-2D. Agric. Water Manag. 97: 1070–1076.
Khodaverdiloo, H., Homaee, M., van Genuchten, M.T and Ghorbani Dashtaki, S. 2011. Deriving and validating pedotransfer functions for some calcareous soils. J. Hydrol. 399: 93–99.
Lazarovitch, N., Simunek, J and Shani, U. 2005. System dependent boundary condition for water flow from subsurface source. Soil Sci. Soc. Am. J. 69(1): 46–50.
Mohammad, N., El-Nesr, N.M., Alazba, A.A and Simunek, j. 2014. HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils. Irrig. Sci. 32: 111–125.
Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3): 513–522.
Provenzano, G. 2007. Using HYDRUS-2D simulation model to evaluate wetted soil volume in subsurface drip irrigation systems. J. Irrig. Drain. Eng. 133: 342–349. doi: 10.1061/(ASCE)0733-9437(2007)133:4(342).
Ramos, T.B., Simunek, J., Gonc alves, M.C., Martins, J.C., Prazeres, A and Pereira, L.S. 2012. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manag. 111: 87–104.
Rocha, D., Abbasi, F and Feyen, J. 2006. Sensitivity analysis of soil hydraulic properties on subsurface water flow in furrows. J. Irrig. Drain. Eng. 132: 418–424.
Saefuddin, R., Saito, H and Simunek, J. 2019. Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation, Agric. Water Manag. 211: 111-122.
Simunek, J., Sejna, M and van Genuchten, M.T. 2006. The HYDRUS software package for simulating two and three-dimensional movement of water, heat, and multiple solutes in variably−saturated media. In: Technical Manual, Version 1.0, PC Progress, and Prague, Czech Republic.
Simunek, J., van Genuchten, M.T.h and Sejna, M. 2008. Development and applications of the HYDRUS and STANMOD software packages, and related codes. Vadose. Zone J. 7(2): 587–600.
Simunek, J., van Genuchten, M.T and Sejna, M. 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose. Zo. J. 15: 1–25.
Singh, D.K., Rajput, T.B.S., Singh, D.K., Sikarwar, H.S., Sahoo, R.N and Ahmad, T. 2006. Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agric. Water Manag. 83(1–2): 130–134.
Siyal, A.A., van Genuchten, M.T and Skaggs, T.H. 2013. Solute transport in a loamy soil under subsurface porous clay pipe irrigation. Agric. Water Manag. 121: 73–80.
Skaggs, T.H., Trout, T.J., Simunek, J and Shouse, P.J. 2004. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. J. Irrig. Drain. Eng. 130: 304–310.
Stein, T.M. 1997. The influence of evaporation, hydraulic conductivity, wall−thickness, and surface area on the seepage rates of pitchers for pitcher irrigation. J. Appl. Irrig. Sci. 32: 65–83.
Subbaiah, R. 2013. A review of models for predicting soil water dynamics during trickle irrigation. Irrig. Sci. 31(3): 225–258. doi:10.1007/s00271-011-0309-x.
Tang, L.S., Li, Y and Zhang, J. 2005. Physiological and yield responses of cotton under partial rootzoone irrigation. Field Crops Research. 94: 214-223.
Van Genuchten, M.T. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. 44: 892–898.
Vrugt, J.A., Hopmans, J.W and Simunek, J. 2001. Calibration of a two-dimensional root water uptake model. Soil Sci. Soc. Am. J. 65(4): 1027–1037.
Vrugt, J.A., Van Wijk, M.T., Hopmans, J.W and Simunek, J. 2002. One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour. Res. 37(10): 2457–2470.
Yao, W.W., Ma, X.Y., Li, J and Parkes, M. 2011. Simulation of point source wetting pattern of subsurface drip irrigation. Irrig. Sci. 29: 331–339. 
Zhijuan, Q., Hao, F., Ying, Z., Tibin, Z.h., Aizheng, Y and Zhongxue, Z.h. 2018. Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China. Agric. Water Manag. 201: 219-231.
Zhou, Q., Kang, S., Zhang, L and Li, F. 2007. Comparison of APRI and HYDRUS-2D models to simulate soil water dynamics in a vineyard under alternate partial root zone drip irrigation. Plant Soil. 291(1): 211–223.