The effect of climate change on soil moisture content of Maize farm using data from the fifth report and SWAP model

Document Type : Original Article

Authors

1 Department of science and water engineering, University of Birjand

2 Assistant Professor, Department of Science and Water Engineering, University of Birjand., Birjand., Iran

Abstract

The soil moisture estimation is essential for optimal water and soil resources management. Surface moisture is an important variable in nature's water cycle, which plays an important role in the global equilibrium of water and energy due to its impact on hydrological, ecological and meteorological processes. Therefore, in this study, soil moisture simulation in the upcoming period (2020-2039) was compared to the base period (1992-1992) from the Faroub maize farm located in Neishabour plain. The climate data was estimated using six GCM models and two RCP4.5 and RCP8.5 release scenarios. The LARS-WG model was quantified using SWAP model. The results of the change in climate parameters showed that the minimum and maximum temperatures for AOGCM models in the upcoming period will increase compared to the base period, and in some models the future rainfall will decrease compared to the base period and the RCP8.5 scenario shows a higher increase compared to RCP4.5. Changes in soil moisture at a depth of 30 cm showed that the moisture content in the soil in the upcoming periods of 2020-2039 compared with the base period for each two-year period is negligible however, the RCP8.5 scenario shows lower moisture content than RCP4.5 scenario for the six AOGCM models. Estimated annual moisture values showed that in RCP4.5 scenarios at 30 cm depth of the IPSL model, the lowest moisture content and GISS-ES-R and GFDL models had the highest annual moisture content and for RCP8.5 at depths of 30 Centimeters GFDL Model and GISS-ES-R model have the lowest moisture content and the highest annual moisture content during the weeks after plant growth.

Keywords


-آشفته،پ.س. 1391. تاثیر تغییراقلیم بر نیاز آبی محصولات با استفاده از مدل HadCM3 در شبکه آبیاری آیدوغموش. مجله آبیاری و زهکشی ایران. 6 3 : 151-142.
- کوهی،م و ثنائی‌نژاد،س.ح. 1393. بررسی سناریوهای تغییراقلیم بر اساس نتایج حاصل از دو روش ریزمقیاس گردانی آماری برای متغیر تبخیر-تعرق مرجع در منطقه ارومیه. مجله آبیاری و زهکشی ایران. 7(4): 559-574.
-خان‌محمدی،ف.، همایی،م و نوروزی،ع.ا. 1393. برآورد رطوبت خاک به کمک شاخص های پوشش گیاهی و دمای سطحی خاک و شاخص نرمال شده رطوبت با استفاده از تصاویرMODIS . مجله حفاظت منابع آب و خاک.4(2): 37-45.
-یعقوب‌زاده،م.، امیرآبادی‌زاده،م.، رمضانی،ی و پوررضا‌بیلندی، م. 1396. بررسی عدم قطعیت مدلهای گردش عمومی جو در برآورد رطوبت خاک تحت تأثیر تغییر اقلیم. مجله تحقیقات آب و خاک ایران. 48(5): 1109-1119.
-Aloysius,N.R., Sheffield,J., Saiers,J.E., Li,H  and Wood,E.F. 2016. Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. Journal of Geophysical Research: Atmospheres. 121.1: 130–152.
-Chiew,F.H.S., Whetton,P.H., McMahon,T.A and Pittock,A.B. 1995. Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments. Journal of Hydrology. 167: 121–147.
-Destouni,G and Verrot,L. 2014. Screening long-term variability and change of soil moisture in a changing climate. Journal of Hydrology. 516: 131–139
-Feng,H and Liu,Y. 2015. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. Journal of Hydrology. 531: 1129–1140.
-Frame,D.J and Stone,D.A. 2013. Assessment of the first consensus prediction on climate change. Nature Clim. Change. 3.4: 357–359.
-Fuhrer,J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture. Ecosystems and Environment. 97.1–3: 1–20.
-Hauser,M., Orth,r and Seneviratne,S. 2016. Investigating soil moisture-climate interactions with prescribed soil moisture experiments: an assessment with the Community Earth System Model (version 1.2). Geoscientific Model Development. Discuss. 10.4:1665-1677.
-Molina-Navarro,E., Hallack-Alegría,M., Martínez-Pérez,S., Ramírez-Hernández,J., Mungaray-Moctezumac,A and Sastre-Merlín,A. 2015. Hydrological modeling and climate change impacts in an agriculturalsemiarid region. Case study: Guadalupe River basin, Mexico. Agricultural Water Management.175: 29-42.
-Seager,R., Ting,M., Held,I., Kushnir,Y., Lu, J., Vecchi,G and Lau,N.C. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science. 316.5828: 1181–1184.
-Shin,Y and Jung,Y. 2014. Development of Irrigation Water Management Model for Reducing Drought Severity Using Remotely Sensed Soil Moisture Footprints. Journal of Irrigation and Drainage Engineering. 140(7): 1-15.
-Tavakoli,M and Smedt,F.D. 2012 .Impact of Climate Change on Streamflow and Soil Moisture in the Vermilion Basin, Illinois, Journal of Hydrologic Engineering, 17.10:1059-1070.
-Terando,A., Keller,K and Easterling,W.E. 2012. Probabilistic projections of agro-climate indices in North America. Journal of Geophysical Research: Atmospheres. 117.8: D08115.
-VanDam,J.C., Huygen,J., Wesseling,J.G., Feddes,R.A., Kabat,P., VanWaslum,P.E.V., Groenendjik,P and VanDiepen,C.A. 1997. Theory of SWAP version 2.0: simulation of water flow and plant growth in the soil–water–atmosphere–plant environment. Wageningen Agricultural University and DLO Winand Staring Centre Wageningen. The Netherland.