Evaluation of Daisy model for simulating the two-dimensional water movement in the soil and the sunflower yield

Document Type : Original Article

Authors

1 Department of Water Sciences, Faculty of engineering Sciences, Sari University of Agricultural Sciences and Natural Resources, Sari, Km 9 Farah Abad Road, Sari, 48181-68984 Mazandaran, Iran

2 Sanru

3 Assistant Professor, Water Engineering Department, Faculty of Agricultural Sciences, University of Guilan., Rasht., Iran

4 Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark

Abstract

Using the simulated models can help the users to approach the attitude of applying different managements. Therefore, identifying and evaluating the models in this case is non-negligible. The Daisy model is one of the most comprehensive models for simulating of the water-soil-plant-atmosphere system whose performance was evaluated in this study. Based on the data of three irrigation treatments: Full irrigation (FI) and deficit irrigation (DI) at 75% and 55% level during two years, the conditions were defined in the model and the crop submodel was made for the sunflower. The yield parameters were measured and compared with simulated values based on R2, NRMSE and efficiency coefficients (EF). The model was validated based on the results of full irrigation treatments and the model performance was also evaluated based on irrigation treatments. The results showed that Daisy has a very acceptable performance by the mean of NRMSE for the leaf area index(LAI), height(H) and dry matter(DM) and water content estimated 0.059, 0.036, 0.031 and 0.064 and the mean EF were equal to 85.67, 33.82, 91.5 and 67 percent. the rang of R2 was 0.799-0.999. The significance of the difference between simulated and observed values was compared by T-test for the paired samples in SPSS. The total results showed that the model could simulate the full irrigation better than the deficit irrigation. In general, Daisy could be used as an applied model to simulate the conditions of irrigation projects under different management.

Keywords


راضی، ه.، آساد، م. 1377. ارزیابی تغییرات صفات مهم زراعی و معیارهای سنجش تحمل به خشکی در ارقام آفتاب­گردان. مجله­ علوم کشاورزی و منابع­ طبیعی. .2 1: 31-43.
سپاسخواه، ع.ر.، توکلی، ع.ر.، موسوی، ف. 1385. اصول و کاربردهای کم­آبیاری. انتشارات کمیته ملی آبیاری و زهکشی ایران: 1–7.
قدمی فیروزآبادی، ع. 1394. مدیریت مصرف آب و تغییرات رطوبت خاک در آبیاری کامل، کم­آبیاری تنظیم شده و کم­آبیاری ناقص ریشه در گیاه آفتابگردان. رساله دکتری آبیاری و زهکشی، گروه مهندسی آب. دانشگاه علوم کشاورزی و منابع طبعی ساری.
هاشمی، س. ف.، شاهنظری، ع.، رائینی، م.، قدمی فیروزآبادی، ع. و امیری، ا. 1397. بررسی ضرایب ورودی گیاهی مدل WOFOST در شرایط کم­آبیاری بخشی ریشه­ای برای گیاه آفتاب­گردان. نشریه آب و خاک (علوم و صنایع کشاورزی). 32 (4): 660-647.
Abrahamsen, p. 2014. Daisy Program Reference Manual. University of Copenhagen, Department of Basic sciences and environment, Environmental chemistry and physics (March 26, 2014). 558p. daisy@daisy-model.org
Allen, R.G., Pereira, L.S., Raes, D and Smith, M. 1998. Crop Evapotranspiration: Guidelines for Computing Crop Requirements, FAO Irrigation and Drainage Paper 56. ( FAO, Rome)
Dyer, H.J., Skok, J and Scully, N.J. 1959. Photoperiodic behavior of sunflower. Botanical Gazette. Published by the university of Chicago press. 121(1):50-55.  https://www.jstor.org/stable/2473118.
Conner, D.J and Hall, A.J. 1997. Sunflower Physiology In: Schneiter AA, ed. Sunflower technology and production, monograph No. 35. Madison: ASA, CSSA, SSSA, 113–182.
English, M.J., Musick, J.T and Murty, V.V.N. 1990. Deficit irrigation. In: Hoffman, G.J., Howell, T.A and K.H. Solomon (Eds), Management of farm irrigation systems. ASAE Monograph no. 9. American Society of Agricultural Engineers publisher. 1020p.
FAO. 1990. Expert consultation on revision of FAO methodologies for crop water requirements. Annex V. FAO Penman-Monteith Formula.
Geerts, S and Raes, D. 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agriultraul Water Management. 96: 1275–1284.
Hansen, S. 2002. Daisy, a flexible Soil-Plant-Atmosphere system Model. The Royal veterinary and agricultural university, department of Agriculture science, Laboratory for agrohyrology and bioclimatology: 47P.
Hansen S., Jensen, H.E., Nielsen, N.E and Svendsen, H. 1991. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model Daisy. Fertilizer Research. 27: 245-259.
Hansen, S., Jensen, H.E., Nielsen, N.E and Svendsen, H. 1990. DAISY: Soil Plant Atmosphere System Model. NPO Report No. A 10. The National Agency for Environmental Protection, Copenhagen. (http://daisy.ku.dk/publications/A10.pdf). 272 pp.
Hansen, S. 1984: Estimation of potential and actual evapotranspiration. Nordic Hydrology. 15: 205- 212.
Kloss, S., Schütze, N and Schmitz, G.H. 2010. Comparison of SVAT models for simulating and optimizing deficit irrigation system in arid and semi-arid countries under climate variability. Geophysical. EGU General Assembly. 2-7 May 2010, Vienna.
Kloss, S., Schütze, N and Schmitz G.H. 2012. Evaluation of crop models for simulating and optimizing deficit irrigation systems in arid and semi-arid countries under climate variability. Water Resources management. 26: 997-1014. DOI 10.1007/s11269-011-9906-y
Lammoglia, S.K., Brun, Franç., Quemar, T., Moeys, J., Barriuso, E., Gabrielle, Benoî and Mamy, L. 2018. Modelling pesticides leaching in cropping systems: Effect of uncertainties in climate, agricultural practices, soil and pesticide properties. Environmental Modelling and Software. doi: 10.1016/j.envsoft.2018.08.007.
Makkink, G.F. 1957. Ekzameno de la formula de Penman. Netherlands Journal of Agricultural Science. 5: 290-305.
Nash, J.E and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models Part 1. A discussion of principles. Journal of Hydrology. 10: 282–290.
Plauborg, F., Abrahamsen, P., Gjettermann, B., Mollerup, M., Iversen, B.V., Liu, F., Andersen, M.N and Hansen, S. 2010. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes. Agricultural water management. 98: 425-439.
Richard, L.A. 1931. Capillary conductivity of liquids in porous mediums. Physics 1: 318-333.
Salazar O., Nájera F., Tapia W. and Casanova M. 2017. Evaluation of the DAISY model for predicting nitrogen leaching in coarse-textured soils cropped with maize in the Mediterranean zone of Chile. Agricultural Water Management. 182: 77-86.
Sepaskhah, A.R and Khajehabdollahi, M.H. 2005. Alternative furrow irrigation with different irrigation intervals for maize (Zea mays L.). Plant Production Science. 8: 592–600.
Sepaskhah, A.R. and Akbari, D. 2005. Deficit irrigation planning under variable seasonal rainfall. Biosystems Engineering. 92 (1): 97-106.
Shahnazari, A., Jensen, C.R., Liu, F., Jacobsen, S.-E and Andersen, M.N. 2005. Partial root zone drying for water saving. Organized by Kasetsart University and Swiss federal institute of technology (eds), in: Ikke angivet. Kasetsart University: 75-80.
Strzepek, K and Boehlert, B. 2010. Competition for water for the food system. Philosophical transactions of the Royal Society of London. Series B. 365: 2927–2940.
Van der Keur, P., Hansen, S., Schelde, K and Thomsen, A. 2001. Modification od Daisy SVAT model for use of remotely sensed data. Agricultural and Forest Meteorology. 106(3): 215-231.