Assessment of the impact of climate change and implementing policies on water supply vulnerabilities

Document Type : Original Article

Authors

1 Water Engineering Department, Agriculture Faculty, Urmieh University,Urmieh,Iran

2 Associate Professor, Department of Water Engineering , Faculty of Agriculture, Urmia University., Urmia., Iran

3 Water engineering department, agriculture facility,urmia university, urmia, iran

Abstract

Zarrineh Roud basin plays an important role in supplying water to Lake Urmia and the region's drinking and agricultural needs. Agricultural development, water transfer outside the basin and climate change have reduced the flow into Lake Urmia. In this study, we investigate the simultaneous impact of climate change and managers' s policies on the availability of water resources in the Zarrineh Roud basin. For this purpose, first using AOGCM model and SDSM downscaling model and considering two A2 and B2 emission scenarios, the minimum temperature, maximum and rainfall data for 2070 to 2084 are reduced and then basin's charge was calculated by using SWAT model. The results showed an average increased in water and temperature stress to 6/29 and 5/27 Centigrade degree and an average decrease in annual discharge into the lake under A2 and B2 emission scenarios. In the next step, a comprehensive dynamic system model of the zarrineh Roud basin was developed by taking into account the set of factors affecting it, and the impact of inland and out of case study basin on water resources was investigated after validation and calibration of model. The results indicate a conflict between the agricultural sector and the environmental need of Lake Urmia that increased production and agricultural levels would reduce the inflow into Lake Urmia.

Keywords


منصوری، ب.، احمدزاده، ح.، مساح بوانی، ع.، مرید، س.، دلاور، م. و لطفی، س. 1393. بررسی اثرات تغییر اقلیم بر منابع آب حوضه زرینه‌رود با استفاده از مدل SWAT. آب و خاک (علوم و صنایع کشاورزی)، 28(6): 1191-1203.
نادری، س.، حجازی زاده، ز.، علیجانی، ب.، حیدری، ح.، عباسپور، ک. 1398. چشم انداز تاثیر تغییر اقلیم آینده بر منابع آب و عملکرد چغندرقند در حوضه دریاچه ارومیه. نشریه تحقیقات کاربردی علوم جغرافیایی، دانشگاه خوارزمی.
Akhtar, M. K., Wibe, J., Simonovic, S. P., and MacGee, J..(2013) Integrated assessment model of society biosphere-climate-economy-energy system. Environmental modeling& Software. 49:1-21.
Arnold, J.G.,  Allen, P.M and Bernhardt, G. (1993). A comprehensive surface groundwater flow model. Journal of Hydro. 142:47-69.
Barati, A., Azadi, H. and Scheffran, J. (2019). A system dynamics model of smart groundwater governance. Agricultural Water Management 221: 502–518.
Chen, Z. and Wei, S.(2014). Application of system dynamics to water security research.Water resources management. 28: 287-300.
Cooley, H., Christian-Smith, J. and Gleick, P. (2009). Sustaining California agriculture in an uncertain future, Tech. Rep., July, Pac. Inst, Oakland, Calif.
Darren, L. F., Yuzhou, L., Eike, L. and Minghua, Z. (2009). Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology 374: 16–29.
Dasgupta, P. (2018). Climatic Change impacts on foodgrain production in India. Springer Nature Singapore Pte Ltd.
Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: The M.I.T. Press.
Godde, C., Dizee, K., Ash, A., Thornton, P. (2019). Climate change and variability impacts on grazing herds: Insights from a system dynamics approach for semi‐arid Australian rangelands. Glob Change Biol, 25:3091–3109.
Gohari, A., Eslamian, S., Mirchi, A., Abedi-Koupaei, J., Bavani, A. M., and Madani, K. (2013). Water transfer as a solution to water shortage: a fix that can backfire. Journal of Hydrology, 491: 23-39.
Houghton J. T. 2001 Climate change 2001. Thescientific basis 881.
Huang J., Zhang J., Zhang Z., Xu C., Wang B. and Yao J. (2011). Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stochastic Environmental Research and Risk Assessment 25: 781-92.
IPCC., Watson, R.T., Zinyowera, M.C., Moss, R.H. and Dokken, D.J.(Eds.). (2001), Sepecial Report on The Regional Impacts of Climate Change, An Assessment of Vulnerability. Cambridge University Press, UK.
Kang Y., Khan S., and Ma X. (2015), Analysing Climate Change Impacts on Water Productivity of Cropping Systems in the Murray Darling Basin, Australia. Irrigation and Drainage, doi: 10.1002/ird.1914.
Lane, M.E., Kirshen,P.H. and Vogel, R.M. (1999), Indicators of impact of global climate change on U.S water resources. ASCE, journal of Water Resources Planning and Management. 125(4): 194-204.
Li, Z., Li, C., Wang, X., Peng, C., Cai, Y., Huang, W. (2018). A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China. J. Hydrol. 556: 50–60.
Madani, K. and Mariño, M.A. (2009), System dynamics analysis for managing Iran’s Zayandeh-Rud River Basin. Water Resources Management, 23: 2163-2187.
McCarthy J. J., Canziani O. F., Leary N. A., Dokken D. J. and White K. S. (2001), Climate change: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Philip, J.-M., Sanchez-Choliz, J. and Sarasa C. (2014), Technological change in irrigated agriculture in a semiarid region of Spain. Water Resources Research, 50: 9221–9235, doi: 10.1002/2014WR015728.
Shadkam, S., Ludwig, F., van Oel, P., Kirmit, Ç., & Kabat, P. (2016). Impacts of climate change and water resources development on the declining inflow into Iran's Urmia Lake. Journal of Great Lakes Research, 42(5), 942-952.
Scheierling, S. M., R. A. Young, and G. E. Cardon (2006), Public subsidies for water-conserving irrigation investments: hydrologic, agronomic, and economic assessment. Water Resources Research, 42: 1-11.
Steele-Dunne.S, Lynch.P, McGrath.R, Semmler.T, Wang.S, Hanafin.J, Nolan. (2008), The impacts  of  climate  change  on hydrology in Ireland. Journal of Hydrology  356: 28– 45.
Sterman, J. (2000) . Business Dynamics: Systems Thinking and Modeling for a Complex World. Irwin/McGraw-Hill.
Stojkovic, M. Slobodan, P. (2019), System Dynamics Approach for assessing the Bbehaviour of the Lim Reservoir system (Serbia) under Changing Climate Conditions. Water 2019, 11, 1620.
Song, Lironga., ZHANG, J. (2012), Hydrological response to climate change in Beijiang River Basin Based on the SWAT Model. Journal of Procedia Engineering 28 : 241 – 245.
Souvignet M., Gaese H., Ribbe L., Kretschmer N. and Oyarzún R. (2010), Statistical downscaling of precipitation and temperature in north‐central Chile: an assessment of possible climate change impacts in an arid Andean watershed. Hydrological Sciences Journal–Journal des Sciences Hydrologiques 55(1): 41-57.
Ward, F.A. and Pulido-Velazquez, M. (2008), Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences, 105(47): 18215-18220.
Wilby R. L. and Dawson C. W. (2007), A decision support tool for the assessment of regional climate change impacts. United Kingdom.
Xiao-qing, Z., Hui, R., Qi, Y., Chun-lan, H., Hong-hui, Y. (2012). Scenarios simulation on carrying capacity of water resources in Kunming City. Procedia Earth Planet. Sci. 5: 107-112.
Yang, Z., Song, J., Cheng, D., Xia, J., Li, Q., Ahamad, M.I. (2019). Comprehensive evaluation and scenario simulation for the water resources carrying capacity in Xi’an city, China. J. Environ. Manag. 230: 221–233.
Zomorodian, M., Lai, S.H., Homayounfar, M., Ibrahim, S., Fatemi, S.E., El-Shafie, A. (2018). The state-of-the-art system dynamics application in integrated water resources modeling. J. Environ. Manag. 227: 294–304.