Investigation the Changes of Water Resources Deficit Signatures in Lake Urmia Basin

Document Type : Original Article

Authors

1 Department of Sciences and Water Engineering, University of Birjand

2 Department of Water Engineering, University of Birjand

3 Professor, Department of Civil and Environmental Engineering, Politecnico di Milano, Italy.

4 Associate Professor, Department of Water Engineering, Shahrekord University, Shahrekord, Iran.

Abstract

Monitoring long-term changes in water resources in each basin acts as a monitoring system. Investigating changes in water resources, how they are altered and their percentage in each basin will greatly contribute to the water resources management. In this study, after introducing water deficit signatures, we investigate the changes in these signatures using modified Mann-Kendall test with eliminate the effects of internal autocorrelation. In this study, the values of precipitation, discharge and groundwater levels deficiency were measured during 10, 30 and 60 days durations in 12 sub basins in Lake Urmia Basin. Rain gauge and hydrometric stations were used for precipitation and discharge values and the entropy theory was used to select the piezometer stations. The results of changes in deficiency signatures values showed that the overall changes are incremental, which in some cases is significant and in some cases not significant. In general, the results indicated that, on average, the rainfall deficit, discharge deficit and groundwater level deficit signatures increased by 52, 35, and 23 percent, respectively, over the long-term average. These changes for Lake Urmia Basin indicate an increase in meteorological, hydrological and groundwater droughts.

Keywords


احمدی، ف.، رادمنش، ف.، میرعباسی نجف آبادی، ر. 1395. تحلیل روند بارندگی نیمه شمالی کشور در نیم قرن اخیر. نشریه دانش آب و خاک، 26(2): 224-207.
ناظری تهرودی، م.، خزیمه‌‌نژاد، ح. 1396. بررسی روند تغییرات بارش‌‌های منطقه جنوب غرب آسیا. آب و خاک مشهد، 31(5): 1125-1151.
ناظری تهرودی، م.، شهیدی، ع. 1396. بررسی تأثیر احداث سد گتوند بر تغییرات سری زمانی پارامترهای کیفی جریان. تحقیقات منابع آب ایران، 13(3): 180-175.
Ahmadi, F., Nazeri Tahroudi, M., Mirabbasi, R., Khalili, K., Jhajharia, D. 2018. Spatiotemporal trend and abrupt change analysis of temperature in Iran, Meteorological Applications, 25(2), 314-321.
Hamed, K. H., Rao, A. R. 1998. A modified Mann-Kendall  trend test for autocorrelated data, Journal of Hydrology, 204(1-4), 182-196.
Kendall, M. G., Stuart, A. 1963. The advanced theory of statistics: in 3 volumes. C. Griffin.
Khalili, K., Tahoudi, M. N., Mirabbasi, R., Ahmadi, F. 2016. Investigation of spatial and temporal variability of precipitation in Iran over the last half century, Stochastic Environmental Research and Risk Assessment, 30(4), 1205-1221.
Khozeymehnezhad, H., Tahroudi, M. N. 2019. Annual and seasonal distribution pattern of rainfall in Iran and neighboring regions, 12(8), 271.
Kumar, S., Merwade, V., Kam, J., Thurner, K. 2009. Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains, Journal of Hydrology, 374(1-2), 171-183.
Lins, H. F., Slack, J. R. 2005. Seasonal and regional characteristics of US streamflow trends in the United States from 1940 to 1999, Physical Geography, 26(6), 489-501.
Mann, H. B. 1945. Nonparametric tests against trend, Econometrica: Journal of the Econometric Society, 245-259.
Sen, PK. 1968. Estimates of the regression coefficient based on Kendall's tau, Journal of the American statistical association, 63(324),1379-1389.
Tahroudi, MN., Khalili, K., Ahmadi, F., Mirabbasi, R., Jhajharia, DJ. 2018. Development and application of a new index for analyzing temperature concentration for Iran’s climate, International Journal of Environmental Science and Technology, 16(6), 2693-2706.
Tahroudi, MN., Pourreza-Bilondi, M., Ramezani, Y.  2019a. Toward coupling hydrological and meteorological drought characteristics in Lake Urmia Basin, Iran, Theoretical and Applied Climatology, 1-13.
Tahroudi, MN., Siuki, AK., Ramezani, Y. 2019b. Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory, Environmental monitoring and assessment, 191(4), 250.
Theil, H. 1950. A rank-invariant method of linear and polynomial regression analysis, 3; confidence regions for the parameters of polynomial regression equations, Indagationes Mathematicae, 1(2), 467-482.
Wang, S., Zhang, Z., Sun, G., McNulty, S. G., Zhang, H., Li, J., Zhang, M. 2008. Long‐Term Streamflow Response to Climatic Variability in the Loess Plateau, China 1, Jawra Journal of the American Water Resources Association, 44(5), 1098-1107.
Xu, Z., Schumann, A., Li, J. 2003. Markov cross-correlation pulse model for daily streamflow generation at multiple sites, Advances in Water Resources, 26(3), 325-335.
Zamani, R., Mirabbasi, R., Nazeri, M., Meshram, SG., Ahmadi, F. 2018. Spatio-temporal analysis of daily, seasonal and annual  precipitation concentration in Jharkhand State, India, Stochastic Environmental Research and Risk Assessment, 32(4), 1085-1097.