شبیه سازی نوسانات سطح آب زیرزمینی با استفاده از مدل‌های ماشین بردار پشتیبان و سیستم استنتاج فازی- عصبی تطبیقی (مطالعه موردی: دشت مراغه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 عضو هیئت علمی/ دانشگاه زنجان

3 موسسه تحقیقاتی مهندسی کشاورزی و زیست فناوری لابنیز (ATB)، پتسدام، آلمان

چکیده

به منظور مدیریت بهینه منابع آب زیرزمینی، ضروری است برآورد دقیقی از نوسانات سطح آب زیرزمینی انجام پذیرد که در سال‌های اخیر استفاده از روش‌های هوش مصنوعی بر پایه تئوری داده‌کاوی برای این منظور مورد توجه محققین قرار گرفته است. هدف از پژوهش حاضر، مقایسه عملکرد سیستم استنتاج فازی-عصبی تطبیقی (ANFIS) و روش ماشین بردارپشتیبان (SVM) در شبیه‌سازی نوسانات سطح آب زیرزمینی می‌باشد. داده‌های بارش و سطح ایستابی ماهانه مربوط به تعداد 25 چاهک مشاهده‌ای در بخشی از محدوده دشت مراغه واقع در استان آذربایجان شرقی مربوط به بازه زمانی 22 ساله (97-1375) به عنوان داده‌های ورودی مورد نیاز مدل‌ها استفاده شد. میانگین تراز سطح ایستابی در محدوده مورد مطالعه ۱۳۲۱ متر و میانگین بارش و دمای سالانه به ترتیب 294 میلی‌متر و 14 درجه سانتی‌گراد می‌باشد. مقادیر میانگین شاخص‌های آماری ضریب همبستگی و ریشه میانگین مربعات خطا برای مدل ANFIS به ترتیب برابر 91/0 و 38/0 متر و برای مدل SVMبه ترتیب برابر 92/0 و 40/0 متر محاسبه شد. نتایج نشان داد، اضافه شدن پارامتر بارش ماهانه به داده‌های ورودی، اثر قابل توجهی بر دقت مدل ANFIS نداشته است ولی در مدل SVM منجر به افزایش دقت مدل به میزان 14 درصد شد. به طور کلی می‌توان بیان داشت، دقت شبیه‌سازی هر دو مدل رضایت بخش بوده با این وجود مدل ANFIS از برتری جزئی نسبت به مدل SVM برخوردار می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Groundwater Level Fluctuation Simulation Using Support Vector Machines and Adaptive Neuro Fuzzy Inference System (Case Study: Maragheh Plain)

نویسندگان [English]

  • Mohammad Mahdi Jafari 1
  • Hassan Ojaghlou 2
  • Mohammad Zare 3
1 Water Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Department of Water Science and Engineeringو University of Zanjan
3 Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
چکیده [English]

In order to optimal management of groundwater resources, accurate estimate of groundwater level fluctuations is required. In recent years, the use of artificial intelligence methods based on data mining theory has increasingly attracted researchers' attention. The purpose of the present study is to compare the performance of adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM) methods to simulate groundwater level fluctuations. A 22-year dataset (1996-2018) including hydrological parameters such as monthly precipitation (P) and groundwater level (GL) from 25 observation wells in some parts of Maragheh plain located in East Azarbaijan province were used as models input data. The average groundwater level in the study area is 1321 m and the annual precipitation and temperature was calculated 294 mm and 14 ◦C, respectively. Mean values of statistical indices of correlation coefficients and root mean square error were calculated 0.91 and 0.38 m for the ANFIS model and 0.92 and 0.40 m for the SVM model, respectively. Results showed that the addition of monthly precipitation parameter to the input data had no significant effect on the accuracy of the ANFIS model, however, the model prediction accuracy increased by 14% for the SVM model. In general, the simulation accuracy of both models was acceptable. However, it can be stated that the ANFIS model has a slight advantage over the SVM model.

کلیدواژه‌ها [English]

  • groundwater level
  • Simulation
  • Intelligent models
آخونی­پورحسینی، ف و اسدی، ا. 1396. کاربرد شبکه بیزین و مدل ماشین بردار پشتیبان در پیش­بینی تغییرات سطح تراز ایستابی (مطالعه موردی: دشت اردبیل). علوم و مهندسی آبخیزداری ایران. 11. 36: 42-33.
اسکندری ع، فرامرزیان یاسوج ف، سلگی ا و زارعی ح، 1397ب. ارزیابی ترکیب ANFIS با تبدیل موجک برای مدل­سازی و پیش­بینی سطح آب زیرزمینی. پژوهشنامه مدیریت حوزه آبخیز، 9 .18: 69-56.
اسکندری، ع.، سلگی، ا و زارعی، ح. 1397الف. شبیه­سازی نوسانات سطح آب زیرزمینی با استفاده از ترکیب ماشین بردار پشتیبان و تبدیل موجک. علوم و مهندسی آبیاری دانشگاه شهید چمران اهواز. 41. 1: 180-165.
اکبرزاده، ف.، حسن­پور، ح و امامقلی­زاده، ص. 1395. پیش­بینی تراز آب زیرزمینی دشت شاهرود با استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی. پژوهشنامه مدیریت حوزه آبخیز. 7. 13: 118-104.
چوبین، ب.، ملکیان، آ.، ساجدی­حسینی، ف و رحمتی، ا. 1393. ﭘﻴﺶ­ﺑﻴﻨﻲ ﺳﻄﺢ اﻳﺴﺘﺎﺑﻲ ﺑﺎ اﺳﺘﻔﺎده از ﺳﺮیﻫﺎی زﻣﺎﻧﻲ و ﺳﻴﺴﺘﻢ اﺳﺘﻨﺒﺎط ﻓﺎزی ـ ﻋﺼﺒﻲ ﺗﻄﺒﻴﻘﻲ. تحقیقات آب و خاک ایران. 45. 1: 28-19.
رضایی، ا.، خاشعی­سیوکی، ع و شهیدی، ع. 1393. طراحی شبکة پایش سطح آب زیرزمینی با استفاده از مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM). تحقیقات آب و خاک ایران. 45. 4: 396-389.
عیسی­زاده، م.، بی­آزار، س. م.، اشرف­زاده، ا و خانجانی، ر. 1397. تخمین پارامترهای کیفی آبخوان دشت گیلان با استفاده از آزمون گاما و مدل­های ماشین بردار پشتیبان و شبکه عصبی مصنوعی. علوم و تکنولوژی محیط زیست. 20. 6: 21-5.
کرد، م.، یوسفی، ن و نوین­پور، ا. ع. 1398. مقایسه روش­های سیستم استنتاج فازی-عصبی تطبیقی (ANFIS)، وزن­دهی معکوس فاصله و زمین آمار در تخمین سطح ایستابی (مطالعه موردی: دشت دهگلان، استان کردستان). اکو هیدرولوژی. 6. 1: 64-51.
گویلی، س.، جوادی، س.، بنی­حبیب، م. ا و ثانی­خانی، ه. 1397. مقایسه مدل­های هوشمند در پیش­بینی نوسانات تراز سطح آب دریاچه زریوار با درنظرگیری تراز آب زیرزمینی. تحقیقات منابع آب ایران. 14. 3: 344-339.
Behzad, M., Asghari, K. and Coppola, E.JR. 2010. Comparative study of SVMs and ANNs in aquifer water level prediction. Journal of Computing in Civil Engineering. 24: 408-413.
Cortes, C. and Vapnik, V. 1995. Support Vector Networks. Machine Learning. 20: 273-297.
Demirci, M., Unes, F. and Korlu, S. 2019. Modeling of groundwater level using artificial intelligence techniques: a case study of reyhanli region in turkey. Ecology and Environmental Research. 17. 2: 2651-2663.
Dibike, Y., Velickov, S., Solomatine, D. and Abbott, M. 2001. Model induction with of support vector machines: Introduction and applications. Journal of Computing in Civil Engineering. 15: 208-216.
Djurovic, N., Domazet, N., Stricevic, R., Pocuca, V., Spalevic, V., Pivic, R., Gregoric, E. and Domazet, U. 2015. Comparison of groundwater level models based on artificial neural networks and ANFIS. The Scientific World Journal. 2: 1-13.
Emamgholizadeh, S., Moslemi, K. and Karami, G. H. 2014. Prediction the groundwater level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resources Management. 28: 5433–5446.
Gong, Y., Zhang, Y., Lan, S. and Wang, H. 2015. A comparative study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for forecasting groundwater levels near lake Okeechobee, Florida. Water Resources Management. 30: 375–391.
Isazadeh, M., Biazar, S.M. and Ashrafzadeh, A. 2017. Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters. Environmental Earth Sciences. 76: 610.
Jang, J.S.R. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics. 23.3: 665-685.
Lijun, F. and Shuquan, L. 2007. Forecasting the runoff using least square support vector machine. Tianjin Teaching Committee. TJGL06-099: 884-889.
Moosavi, V., Vafakhah, M., Shirmohammadi, B. and Behnia, N. 2013. A Wavelet–ANFIS Hybrid Model for groundwater level forecasting for different prediction periods. Water Resources Management. 27: 1301-1321.
Nayak, P. C., Satyaji Rao, Y. R. and Sudheer, K. P. 2006. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management. 20: 77–90.
Nourani, V. and Mousavi, SH. 2016. Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. Journal of Hydrology. 536: 10 -25.
Nourani, V., Alami, M.T. and Aminfar, M.H. 2009. Combined neural - wavelet model for prediction of Ligvanchayi watershed precipitation. Engineering Applications of Artificial Intelligence. 22: 466–472.
Shiri, J. and Kisi, O. 2011. Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Computers and Geosciences. 37: 1692–1701.
Yadav, B. and Eliza, Kh. 2017. A hybrid Wavelet-Support Vector Machine model for prediction of lake water level fluctuations using Hydro-Meteorological data. Measurement. 10: 294-301.
Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O. and Lee, K.K. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology. 396: 128-138.
Yu, P.S., Chen, S.T. and Chang, I.F. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology. 328: 704-716.
Zare, M. and Koch, M. 2016. Using ANN and ANFIS Models for simulating and predicting groundwater level fluctuations in the Miandarband Plain, Iran. 4th IAHR Europe Congress, Liege, Belgium: 416-423.
Zare, M. and Koch, M. 2018. Groundwater level fluctuations simulation and prediction by ANFIS- and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: Application to the Miandarband plain. Journal of Hydro-Environment Research. 18: 63-76.