تخمین توزیع مکانی-زمانی شاخص سطح برگ با استفاده از تصاویر ماهواره-ایSentinel-2 (مطالعه موردی: مزارع ذرت علوفه‌ای جنوب تهران)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سنجش از دور، گروه سنجش از دور و GIS، دانشکده جغرافیا، دانشگاه تهران

2 دانشیار گروه سنجش از دور و GIS، دانشکده جغرافیا، دانشگاه تهران

3 دانشیار گروه سنجش از دور و GIS، دانشکده جغرافیا، دانشگاه تهران.

4 استادیار گروه آگرواکولوژی، موسسه تحقیقاتی علوم محیطی، دانشگاه شهید بهشتی.

5 موسسه روش‌شناسی برای تحلیل‌های محیطی (CNR IMAA)، C.da S.Loja snc, 85050 Tito (Potenza)، ایتالیا.

چکیده

شاخص سطح برگ (LAI)، در مطالعات هیدرولوژی، کشاورزی و مدیریت آبیاری اراضی، نقش مهمی را ایفا می‌کند. به منظور دستیابی به الگوریتم مناسب، با دقت و استوار یا پایدار(robust) برای تخمین توزیع مکانی-زمانی LAI با استفاده از تصاویر Sentinel-2، الگوریتم‌های رگرسیون بردار پشتیبان (SVR)، Kernel Ridge Regression (KRR)، (RVM) Relevance Vector Machines و رگرسیون فرآیند گوسی (GPR)، کالیبره و مورد ارزیابی قرار گرفتند. داده‌های این تحقیق، از مزارع ذرت علوفه‌ای شهرستان قلعه‌نو در استان تهران، در کل دوره رشد آن در تابستان 1397، از طریق اندازه‌گیری تخریبی و نیز عکسبرداری نیم‌کروی، جمع‌آوری شد. نتایج تحقیق با الگوریتم‌های متداول در این حوزه؛ جنگل تصادفی (RF) و شبکه عصبی مصنوعی (ANN)، مقایسه گردیدند. نتایج نشان می‌دهد که الگوریتم GPR، نه تنها از دقت (در گروه باندی بیست متری، 913/0=R2 و 641/0=RMSE)، سرعت و پایداری بالاتری در تخمین LAI برخوردار بوده، بلکه قابلیت منحصر به فرد ایجاد نقشه پیکسل مبنای عدم اطمینان (عدم اطمینان و عدم اطمینان نسبی، به ترتیب، به مساحت 96% و 74% از کل منطقه کمتر از 7/0 و30%) را داراست. با در نظر گرفتن مقادیر R2 و RMSE، SVR دومین الگوریتم با دقت برای برآورد LAI و بعد از آن، RVM، KRR، RF و ANN، به ترتیب می‌باشند. مقایسه LAI تخمین زده شده و میدانی در دفعات نمونه‌برداری با RMSE = 0.276 و 099/0 = Bias، و سایر مزایای مطرح شده، بر کارآیی الگوریتم GPR در تخمین توزیع مکانی-زمانی LAI دلالت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating the spatial-temporal distribution of Leaf Area Index using Sentinel-2 satellite images (Case study: silage maize farms of South of Tehran)

نویسندگان [English]

  • Elahe Akbari 1
  • ali darvishi Boloorani 2
  • Najmeh Neysani Samany 3
  • Saeid Hamzeh 3
  • Saeid Soufizadeh 4
  • Stefano Pignatti 5
1 PhD student of Remote sensing, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran
2 Associate professor in remote sensing, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran
3 Associate professor, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran
4 Assistant professor, Department of Agro-ecology, Environmental Sciences Research Institute, Shahid Beheshti University, G.C
5 Institute of Methodologies for Environmental Analysis (CNR IMAA), C.da S.Loja snc, 85050 Tito (Potenza), Italy
چکیده [English]

Leaf area index (LAI) plays an important role in hydrological, agricultural, and land irrigation management studies. In order to adopt an appropriate, accurate, and robust algorithm to estimate the spatial-temporal distribution of LAI using Sentinel-2 images, the Support Vector Regression (SVR), Kernel Ridge Regression (KRR), Relevance Vector Machines (RVM), and Gaussian Process Regression (GPR) were calibrated and investigated. The research data were collected from silage maize farms in Ghaleh-Now county in Tehran province during the whole growing season in summer 2018 through destructive measurement and hemispherical photography. Our results were compared with the conventional algorithms in this field, i.e. random forest (RF) and artificial neural network (ANN). The results revealed that the GPR algorithm not only has higher accuracy (in 20-m band group, R2=0.913 and RMSE=0.641), speed, and robustness to estimate the LAI, but also it has the unique ability to generate uncertainty pixel-based map (uncertainty and relative uncertainty were less than 0.7 and 30% by 96% and 74% of the total area, respectively). Based on R2 and RMSE, SVR is the second accurate technique for LAI estimation followed by RVM, KRR, RF and ANN, respectively. Comparison of the estimated and field LAI at sampling times with RMSE=0.276 and bias=0.099 and other superiorities indicated the efficiency of GPR algorithm to estimate the spatial-temporal distribution of LAI.

کلیدواژه‌ها [English]

  • Kernel-based algorithm
  • Leaf area index
  • Hemispherical photography
  • Regional study
  • Pixel-based map