امکان‌سنجی کشت گلخانه‌ای با استفاده از آبیاری چگالشی (گیاه مورد مطالعه: ریحان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 دانشیار گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

شوری‌زدایی یکی از راه‌های مقابله با کمبود منابع آب در بخش کشاورزی، بخصوص در مناطقی که دارای منابع آب‌شور و لب‌شور هستند، می‌باشد. آبیاری چگالشی به‌عنوان روشی برای آبیاری با استفاده از آب بی‌کیفیت و انرژی خورشیدی، ترکیبی از آبیاری زیرسطحی و دستگاه تقطیر ساده خورشیدی است. در این تحقیق باهدف بررسی توان آبیاری چگالشی برای تأمین نیاز آبی گیاهان، طرحی به مساحت دو مترمربع در گلخانه ایجاد شد. برای این منظور مخزنی (رطوبت ساز) به ابعاد 15×70×170 سانتیمتر ساخته شد که آب‌شور موجود در آن با استفاده از یک المنت گرمایشی تبخیر می‌شد. بخارآب هوای بالای سطح آب‌شور را گرم و مرطوب می‌کرد. این هوا به 5 عدد لوله‌ی منفذدار به طول دو متر که با فواصل 20 سانتیمتر در عمق 8 سانتیمتری خاک دفن بودند دمیده می‌شد. سپس بخارآب در داخل جدار لوله و خاک میعان کرده و آب موردنیاز گیاهان ریحان که در خاک کشت شده بودند را تأمین می‌نمود. نتایج نشان داد که رطوبت ساز روزانه به‌طور متوسط 12550 میلی‌لیتر آب را به‌صورت بخارآب، وارد لوله‌های منفذدار نمود و از این مقدار به‌طور متوسط 4167 میلی‌لیتر در خاک و لوله به آب مایع تبدیل می‌شد. همچنین این سیستم با آبیاری متوسط روزانه بیش از دو میلی‌متر توان تأمین نیاز آبی گیاه ریحان را داشت و تولید ماده تر و خشک در آبیاری چگالشی نسبت به گلدان‌های شاهد 32 و 63 درصد بیشتر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Greenhouse Cultivation Feasibility Using Condensation Irrigation (Case study: Basil plant)

نویسندگان [English]

  • Hossein Arabnejad 1
  • Farhad Mirzaei 2
  • Hamideh Noory 2
1 PhD Student of Irrigation and Drainage, College of Agriculture and Natural Resources, University of Tehran
2 Associate Professor, College of Agriculture and Natural Resources, University of Tehran
چکیده [English]

Desalination is one of the ways to cope with water scarcity in agriculture sector, especially in areas with saline water. The condensation irrigation as a method for irrigating with saline water and solar energy, is a combination of subsurface irrigation and simple solar distillation. In this study, a condensation irrigation with area of two square meters was developed in a greenhouse, in order to study the feasibility for meeting plant water requirement, so a humidifier with dimensions of 170×70×15 cm was made in which saline water was evaporated using a heating element. The vapor humidified the air above the salty water surface and warmed it. The air was blown into 5 two-meter-long perforated pipes buried with 20 cm intervals at deep of 8 cm. The water vapor then condensed inside the pipe wall and soil, providing the required water for the basil plants grown in the soil. The results showed that daily average of humidifier insertion into the perforated pipes was 12550 ml of water, of which 4167 ml were converted into liquid water in the soil and tubes. Also, this system with average daily irrigation of more than two millimeters was able to meet basil water requirement and production of wet and dry matter in this system was 32% and 63% more than control pots.

کلیدواژه‌ها [English]

  • Desalination
  • Irrigation
  • Salty water
  • Solar Energy
احمدی مقدم،م.، فراهت،س.، عینعلی، ع و ولیزاده، ج.، 1398. شبیه‌سازی و طراحی بهینه استخر خورشیدی جهت آبیاری زیرسطحی. نشریه مهندسی مکانیک امیرکبیر. 51, 507–.523
Arai-Sanoh,Y., Ishimaru,T., Ohsumi,A and Kondo, M. 2010. Effects of soil temperature on growth and root function in rice. Plant Production Science, 13.3:235–242.
Ayars,J.E., Fulton,A and Taylor, B. 2015. Subsurface drip irrigation in California-Here to stay? Agricultural Water Management, 157:39–47.
Bahrami,M and Abbaszadeh,P. 2013. An overview of renewable energies in Iran. Renewable and Sustainable Energy Reviews, 24:198–208.
Ben-Noah,I and Friedman,S.P. 2016. Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments. Agricultural Water Management, 176:222–233.
Burn,S., Hoang,M., Zarzo,D., Olewniak,F., Campos,E., Bolto,B and Barron,O. 2015. Desalination techniques - A review of the opportunities for desalination in agriculture. Desalination 364:2–16.
Camp,C.R. 1998. Subsurface drip irrigation: A review. Transactions of the American Society of Agricultural Engineers. 41.5:1353–1367.
Chouaib,W and Chaibi,M.T. 2014. Performance evaluation of condensation-irrigation solar system under arid climate conditions. International Journal of Energy Technology and Policy. 10.2:145–160.
Gorjian,S and Ghobadian,B. 2015. Solar desalination: A sustainable solution to water crisis in Iran. Renewable and Sustainable Energy Reviews. 48:571–584.
Gorjian,S., Hashjin,T.T., Ghobadian,B and Banakar,A. 2013. Modeling Global Solar Radiation over Iran based on Meteorological Data Using ANN Technique. 11th Iranian Conference on Intelligent Systems(ICIS2013). 9:1–8.
Gustafsson,A.M and Lindblom,J. 2001. Underground condensation of humid air: a solar driven system for irrigation and drinking-water production.
Li,C., Goswami,Y and Stefanakos,E. 2013. Solar assisted sea water desalination: A review. Renewable and Sustainable Energy Reviews. 19:136–163.
Lindblom,J. 2012. Condensation irrigation: a combined system for desalination and irrigation. In Solar Energy. Luleå tekniska universitet.
Lindblom,J and Nordell,B. 2006a. Subsurface irrigation by condensation of humid air. WIT Transactions on Ecology and the Environment, 96:181–189.
Lindblom,J and Nordell,B. 2006b. Water production by underground condensation of humid air. Desalination, 189:248–260.
Lindblom,J and Nordell,B. 2007. Underground condensation of humid air for drinking water production and subsurface irrigation. Desalination, 203.(1–3):417–434.
Lindblom,J and Nordell,B. 2012. Experimental Study of Underground Irrigation by Condensation of Humid Air in Perforated Pipes. Luleå tekniska universitet. Institutionen för samhällsbyggnad och naturresurser.
Maia,C.B., Silva,F.V.M., Oliveira,V.L.C and Kazmerski,L.L. 2019. An overview of the use of solar chimneys for desalination. Solar Energy. 183:83–95.
Manchanda,H and Kumar,M. 2017. Performance analysis of single basin solar distillation cum drying unit with parabolic reflector. Desalination, 416:1–9.
Mashaly,A.F., Alazba,A.A., Al-Awaadh,A.M and Mattar,M.A. 2015. Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water. Agricultural Water Management. 154:1–10.
Okati,V., Behzadmehr,A and Farsad,S. 2016. Analysis of a solar desalinator (humidification–dehumidification cycle) including a compound system consisting of a solar humidifier and subsurface condenser using DoE. Desalination. 397:9–21.
Okati,V., Farsad,S and Behzadmehr,A. 2018. Numerican analysis of an integrated desalination unit using humidification-dehumidification and subsurface condensation processes. Desalination, 433:172–185.
Onwuka,B.M and Mang,B. 2016. Effects of Soil Temperature on Some Soil Properties and Plant Growth. Advances in Plants and Agriculture Research, 8.1:34–37.
Rachmilevitch,S., Lambers,H and Huang,B. 2006. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. Journal of Experimental Botany, 57.3:623–631.
Sharon,H and Reddy,K.S. 2015. A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews. 41:1080–1118.
Tiwari,G.N and Sahota,L. 2017. Review on the energy and economic efficiencies of passive and active solar distillation systems. Desalination, 401:151–179.
Yousefi,B., Boroomand-nasab,S., Moazed,H and Nordell,B. 2017. Condensation Irrigation Field Test-Measurements of Soil Moisture. International Journal of Basic Sciences and Applied Research., 6.3:263–268.