Distributed Application of SWAP Model for Intra-Daily Simulation of an Agricultural System with Subsurface Drainage

Document Type : Original Article

Authors

1 Assistant Professor, Agricultural Engineering Research Department, Ardabil Agricultural and Natural Resources Research and Education Center, AREEO, Ardabil, Iran

2 Department of Irrigation and drainage engineering, Faculty of Agriculture and Natural Resources, University of Tarbiat Modares, Tehran, Iran

3 Assistant Professor, Department of Agriculture, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran

Abstract

Despite the high capability of field-scale agro-hydrological models to simulate plant growth interactions with water and solute transport in agricultural systems, their application to real conditions of large sugarcane fields in Khuzestan province faces many challenges, including spatial heterogeneity of irrigation scheduling across the field, the difficulty of determining initial and boundary conditions as well as several unknown model parameters, and data–intensiveness of calibration procedure. This work aimed to implement the agro-hydrological modeling under real operational conditions of large fields with surface/subsurface drainage. In this work, a distributed agro-hydrological modeling scheme was developed through the application of a modified version of the SWAP model and an improved variant of the Unified Particle Swarm Optimization (UPSO) algorithm with capability of sub-daily calibration and simulation of controlled drainage. The developed model was applied to a sugarcane field with subsurface drainage with planted sugarcane (CP48-103 cultivar) in Imam Khomeini Sugarcane Agro-industrial company farms, during 2010-07-19 to 2011-12-11 (481 days). The results revealed the reasonable performance of the developed modeling scheme in retrieving the measured soil moisture, groundwater level, subsurface drainage outflow (with an EF of 0.901, 0.827, and 0.877 for calibration dataset; and 0.514, 0.798, and 0.672 for validation dataset, respectively), soil water solute concentration, subsurface drainage outflow salinity (with a NRMSE of 0.039 and 0.096 for calibration dataset; and 0.154 and 0.046 for validation dataset, respectively), Leaf Area Index, cane yield, and sucrose yield (with an EF of 0.995, 0.999, and 0.972, respectively).

Keywords


پرچمی عراقی، ف.، میرلطیفی، س.م.، قربانی دشتکی، ش. و صادقی لاری، ع. 1394 الف. مقایسه تبخیر-تعرق مرجع پنمن-مانتیث ASCE و پنمن-مانتیث فائو-56 در مقیاس­های زمانی زیرروزانه مختلف: یک مطالعه عددی. نشریه آب و خاک. 29(5): 1189-1173.
پرچمی عراقی، ف.، میرلطیفی، س.م.، قربانی دشتکی، ش.، وظیفه‌دوست، م. و صادقی لاری، ع. 1394 ب. توسعه یک چارچوب ریز مقیاس ‌سازی به ‌منظور برآورد تبخیر-تعرق مرجع زیرروزانه: ۲- برآورد تبخیر- تعرق زیرروزانه با استفاده از داده‌های هواشناسی روزانه ‌ریزمقیاس شده. نشریه آب و خاک. 29(6): 1734-1721.
پرچمی عراقی، ف.، میرلطیفی، س.م.، قربانی دشتکی، ش.، وظیفه‌دوست، م. و صادقی لاری، ع. 1395. توسعه یک چارچوب ریزمقیاس‌سازی به‌منظور برآورد تبخیر-تعرق مرجع زیرروزانه: 1- مقایسه عملکرد برخی مدل‌های ریزمقیاس‌سازی داده‌های هواشناسی روزانه. نشریه آب و خاک. 30(2): 354-334.
سمیع‌پور، ف.، محمدی، ک.، مهدیان، م.ح. و ناصری، ع. 1389. ارزیابی مدل‌های زهکشی SWAP و DRAINMOD به‌منظور تعیین عمق و فاصله بهینه زهکش‌ها بر اساس بیشترین عملکرد محصول و کمترین مقدار خروجی زه‌آب. نشریه آبیاری و زهکشی ایران. 3(4): 386-375.
صادقی لاری، ع. 1391. بررسی اثرات کنترل سطح ایستابی بر روی میزان جریان، نیتروژن و فسفر خروجی از زهکش‌های زیرزمینی در نواحی خشک (مطالعه موردی: شعیبیه خوزستان). پایان‌نامه دکتری. دانشگاه شهید چمران، اهواز. 178 ص.
محجوبی، ا. 1391. بررسی اثرات زهکشی کنترل شده بر روی شوری خاک، مدیریت آبیاری و عملکرد نیشکر در کشت و صنعت امام خمینی. پایان­نامه دکتری، دانشگاه شهید چمران، اهواز. 206 ص.
محجوبی، آ. و صادقی لاری، ع. 1394. برآورد شوری خاک در محدوده ریشه نیشکر با مدیریت‌های مختلف آبیاری و زهکشی در کشت و صنعت امام خمینی با استفاده از مدل SaltMod. مجله تحقیقات مهندسی کشاورزی. 16(1): 18-1.
محمدی، س.، میرلطیفی، س.م. و اکبری، م. 1393. برنامه‌ریزی آبیاری نیشکر با استفاده از تلفیق داده‌های سنجش از دور و مدل SWAP در کشت و صنعت میرزاکوچک‌خان خوزستان. نشریه پژوهش آب در کشاورزی. 28(1): 50-39.
نوذری، ح.، پورصدری، آ.، آزادی، س. و لیاقت، ع. 1397. ارزیابی نرم‌افزار DRAINMOD-S در شبیه‌سازی شوری زهاب زهکش‌های زیرزمینی. نشریه پژوهش آب در کشاورزی. 32(3). 472-459.
Bessembinder, J.J.E., Dhindwal, A.S., Leffelaar, P.A., Ponsioen, T. and Singh, S. 2003. Analysis of crop growth. In: van Dam, J.C. and Malik, R.S. (Eds.), Water Productivity of Irrigated Crops in Sirsa District, India: Integration of remote sensing, crop and soil models and geographical information systems. Alterra, Wageningen, The Netherlands, pp. 59-82.
Chen, S., Mao, X., Barry, D.A. and Yang, J. 2019. Model of crop growth, water flow, and solute transport in layered soil. Agricultural Water Management. 221: 160-174.
Clark, M.P. and Kavetski, D. 2009. Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes. Water Resources Research. 46(10): W10510, doi:10.1029/2009WR008894.
Dayyani, S., Prasher, S.O., Madani, A. and Madramootoo, C.A. 2010. Development of DRAIN–WARMF model to simulate flow and nitrogen transport in a tile-drained agricultural watershed in Eastern Canada. Agricultural water management. 98(1): 55-68.
Harbaugh, A.W., Banta, E.R., Hill, M.C. and McDonald, M.G. 2000. MODFLOW-2000, the US Geological Survey Modular Groundwater Mode—User Guide to Modularization Concepts and the Ground-water Flow Process, Open-File Report 00-92, Reston, Virginia.
Haverkamp, R., Vauclin, M. and Vachaud, G. 1984. Error analysis in estimating soil water content from neutron probe measurements: 1. local standpoint. Soil Science. 137(2): 78-90.
Inman-Bamber, N. 1995. Climate and water as constraints to production in the South African sugar industry, Proceedings of Conference South African Sugar Technology Association, Vol: 69, pp. 55-59.
Kroes, J.G., van Dam, J.C., Groenendijk, P., Hendriks, R.F.A. and Jacobs, C.M.J. 2008. SWAP version 3.2: Theory description and user manual. Alterra-report 1649, Alterra, Wageningen, The Netherlands, 284 pp.
Li, P. and Ren, L. 2019a. Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation. Journal of hydrology. 574: 497-516.
Li, P. and Ren, L. 2019b. Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: II. Scenario simulation and analysis. Journal of hydrology. 574: 715-732.
Loague, K. and Green, R.E. 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of contaminant hydrology. 7(1): 51-73.
Moriasi, D.N., Arnold, J.G., van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASAE. 50(3): 885-900.
Parchami-Araghi, F., Mirlatifi, S.M., Ghorbani Dashtaki, S. and Mahdian, M.H. 2013. Point estimation of soil water infiltration process using Artificial Neural Networks for some calcareous soils. Journal of Hydrology. 481: 35-47.
Parsopoulos, K.E. and Vrahatis, M.N. 2004. UPSO: A unified particle swarm optimization scheme. In: Simos, T. and Maroulis, G. (Eds.), Lecture Series on Computer and Computational Sciences. VSP International Science Publishers, Zeist, The Netherlands, pp. 868-873.
Parsopoulos, K.E., Vrahatis, M.N. and Global, I. 2010. Particle swarm optimization and intelligence: advances and applications. Information Science Reference Hershey, New York.
Qureshi, A.S., Eshmuratov, D. and Bezborodov, G. 2011. Determining optimal groundwater table depth for maximizing cotton production in the Sardarya province of Uzbekistan. Irrigation and Drainage. 60(2): 241-252.
Sarwar, A., Bastiaanssen, W.G.M., Boers, T.M. and van Dam, J.C. 2000. Evaluating Drainage Design Parameters for the Fourth Drainage Project, Pakistan by using SWAP Model: Part I–Calibration. Irrigation and Drainage Systems. 14(4): 257-280.
Singels, A. and van der Laan, M. 2012. Sugarcane. In: Steduto, P., Hsiao, T.C., Fereres, E. and Raes, D. (Eds.), Crop yield response to water. FAO Irrigation and drainage paper 66, Food And Agriculture Organization of the United Nations, Rome, Italy, pp. 174-183.
Singh, A. 2019. Environmental problems of salinization and poor drainage in irrigated areas: Management through the mathematical models. Journal of cleaner production. 206: 572-579.
Singh, R., Jhorar, R.K., van Dam, J.C. and Feddes, R.A. 2006a. Distributed ecohydrological modelling to evaluate irrigation system performance in Sirsa district, India II: Impact of viable water management scenarios. Journal of Hydrology. 329(3-4): 714-723.
Singh, R., van Dam, J.C. and Feddes, R.A. 2006b. Water productivity analysis of irrigated crops in Sirsa district, India. Agricultural Water Management. 82(3): 253-278.
Su, N., Bethune, M., Mann, L. and Heuperman, A. 2005. Simulating water and salt movement in tile-drained fields irrigated with saline water under a Serial Biological Concentration management scenario. Agricultural Water Management. 78(3): 165-180.
Supit, I., Hooijer, A.A. and van Diepen, C.A. 1994. System description of the Wofost 6.0 crop simulation model implemented in CGMS. Joint research centre; European commission.
United Nations Environment Programme (UNEP). 2015. Nile River Basin: Nile Basin Adaptation to Water Stress: Comprehensive Assessment of Flood & Drought Prone Areas. (Available at: http://wedocs.unep.org/handle/20.500.11822/14067).
van Walsum, P.E.V. and Veldhuizen, A.A. 2011. Integration of models using shared state variables: Implementation in the regional hydrologic modelling system SIMGRO. Journal of Hydrology. 409(1): 363-370.
Xu, X., Huang, G., Zhan, H., Qu, Z. and Huang, Q. 2012. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. Journal of Hydrology. 412: 170-181.
Xu, X., Jiang, Y., Liu, M., Huang, Q. and Huang, G. 2019. Modeling and assessing agro-hydrological processes and irrigation water saving in the middle Heihe River basin. Agricultural water management. 211: 152-164.
Xue, J. and Ren, L. 2017. Assessing water productivity in the Hetao Irrigation District in Inner Mongolia by an agro-hydrological model. Irrigation Science. 35(4): 357-382.