پیش بینی زمانی و مکانی دبی جریان با استفاده از روش های تلفیقی هوش مصنوعی و پیش پردازش و پس پردازش سری زمانی

نوع مقاله: مقاله پژوهشی

نویسنده

گروه عمران، داتشکده فنی، دانشگاه آزاد اسلامی واحد اهر، اهر - ایران

چکیده

پیش بینی دبی رودخانه ها یکی از موارد مهم در برنامه ریزی و مدیریت منابع آبی می باشد. در این تحقیق از روش های پیش‌پردازش و پس پردازش سری زمانی به همراه روش‌های مبتنی بر کرنل ماشین بردار پشتیبان (SVM)و رگرسیون فرآیند گاوسی (GPR) جهت تخمین دبی جریان یدو رودخانه طبیعی در ایالات‌متحده با دو ایستگاه هیدرومتری متوالی استفاده شده است. رودخانه اول شامل تقریبا 2 سال داده بوده و در رودخانه دوم از 4 سال داده روزانه دبی استفاده شده است. مدل های متفاوتی بر اساس مشخصات هیدرولیکی جریان تعریف گردید و کارایی روش های تلفیقی پیش پردازش و پس پردازش در دو حالت درون ایستگاهی و بین ایستگاهی بررسی شد. جهت پیش‌پردازش داده ها ابتدا از روش تبدیل موجک گسسته (DWT) استفاده شد. سپس زیر سری‌های با فرکانس بالا انتخاب شده و با روش ﺗﺠﺰﯾﻪ ﻣﺪ ﺗﺠﺮﺑﯽ ﯾﮑﭙﺎرﭼﻪ (EEMD) دوباره تجزیه گردیدند. در نهایت زیر سری‌های با انرژی بالا به‌عنوان ورودی مدل های مبتنی بر کرنل استفاده شدند. برای پس پردازش داده‌ها نیز از مدل میانگین عصبی غیرخطی (NNA) استفاده شد. نتایج حاصل از تحلیل مدل های تعریف‌شده، دقت بالای روش های تلفیقی به کار رفته در تحقیق را در تخمین دبی جریان به خوبی نشان داد. بطوریکه در هر دو ایستگاه ، درصد خطا با استفاده از روش های تلفیقی پیش‌پردازش و پس‌پردازش نسبت به روش های هوشمند مبتنی بر کرنل تقریباً به میزان 20 تا 25 درصد کاهش یافت. مشاهده شد که در حالت بررسی دبی رودخانه بر اساس داده‌های خود ایستگاه مقدار خطای RMSE مدل تقریبا از 3/0 به 26/0 و در حالت استفاده از داده‌ های ایستگاه قبلی از مقدار 44/0 به 33/0 کاهش یافت. با توجه به قابلیت و دقت بالای روش های پیش پردازش استفاده شده در این تحقیق، مطالعات مشابه در دیگر رودخانه های کشور توصیه می گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Temporal and Spatial Flow discharge prediction using integrated artificial intelligence and pre and post-processing time series methods

نویسنده [English]

  • SEYEDMAHDI SAGHEBIAN
Department of Civil Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
چکیده [English]

Forecasting of river discharge is a important aspect of efficient water resources planning and management. In this study, time series pre and post-processing methods along with support vector machine (SVM) and Gaussian process regression (GPR) kernel based approaches were used to estimate flow discharge of two natural river in the United States with two consecutive hydrometric stations. The first river contained about 2 years of data and in the second river 4 years of daily discharge data was used. Different models were defined based on hydraulic characteristics and the capability of integrated pre and post-processing methods in two states of inter-station and between-stations was investigated. For data pre-processing, the Discrete Wavelet Transform (DWT) method was first used. Then, the high-frequency sub-series were selected and re-decomposed using the Ensemble Empirical Mode Decomposition (EEMD). Finally, sub-series with higher energy were imposed as inputs for kernel-based models. Non-linear neural average (NNA) model was also used for data post-processing. The obtained results from the defined models showed the high accuracy of the integrated methods used in the research in estimating flow discharge. At both stations, the error percentage was reduced by approximately 20 to 25% using the integrated pre-post-processing methods compared to the intelligent kernel based models. It was observed that in the case of river flow prediction based on the station's own data, the RMSE error value of the model decreased from approximately 0.3 to 0.26 and in the case of using the previous station data decreased from 0.44 to 0.33. Due to the high capability and accuracy of the pre-processing methods used in this study, similar studies are recommended in other rivers of the country.

کلیدواژه‌ها [English]

  • Experimental mode decomposition
  • Flow discharge
  • Post-processing
  • Wavelet