توسعه مدل شبکه عصبی برآورد تبخیر-تعرق واقعی گیاه در یک سامانه کشت هیدروپونیک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه آب و خاک، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران

چکیده

توسعه سامانه‌های آبیاری هوشمند با هدف تأمین به‌هنگام و به میزان مورد نیاز آب گیاه یک راهبرد مهم برای افزایش کمیت و کیفیت محصولات کشاورزی با حداقل مصرف آب می‌باشد. از طرفی تعیین میزان آب مورد نیاز گیاه تا حد زیادی به برآورد دقیق تبخیر-تعرق در پوشش گیاهی وابسته است. در این تحقیق از مدل شبکه عصبی برای برآورد تبخیر-تعرق در یک سیستم کشت دوار هیدروپونیک کاهو در فضای بسته استفاده شد. مدت زمان کشت 30 روز و بازه های زمانی داده برداری 10 دقیقه بود. تبخیر-تعرق واقعی گیاه کاهو در سیستم کشت هیدروپونیک مذکور در راستای طراحی سامانه آبیاری به کمک مدل منطق فازی برآورد گردید و با توجه به نتایج مطلوب حاصل از ارزیابی محصول کاشته شده و آب مصرفی، کارایی آن به اثبات رسید. لذا از آن به عنوان معیاری برای اعتبارسنجی مدل شبکه عصبی این پژوهش استفاده شد. تعداد داده برای مدل شبکه عصبی حدود 4500 بوده که به طور تصادفی به سه قسمت، 70درصد( آموزش)، 15درصد( ارزیابی) و 15درصد (آزمون) تقسیم گردید. به منظور یافتن مناسب ترین معماری شبکه عصبی، ساختارهای مختلفی ارزیابی شد. بهترین نتیجه در الگوریتم BR با سه لایه پنهان و توپولوژی 10-10-8 و نیز تابع انتقال tansig در تمامی لایه ها، به دست آمد. برای این ساختار، خطا مطلق و ضریب تعیین به ترتیب0.43 و 99.98 درصد تعیین گردید. همچنین در شبکه یک لایه با توجه به سادگی، الگوریتم BR با یک لایه پنهان با تعداد 8 نرون و تابع انتقال logsig در لایه پنهان و تابع tansig در لایه خروجی به عنوان بهترین مدل انتخاب شد. خطا مطلق و ضریب تعیین این ترکیب به ترتیب 0.79 98.84 درصد به دست آمد. با توجه آنالیز حساسیت،رطوبت و دما به ترتیب به عنوان مهمترین پارامترهای مؤثر در پیش بینی تبخیر-تعرق حاصل شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Development of an ANN model for the prediction of plant actual evapotranspiration under a hydroponic growing system

نویسندگان [English]

  • Mohamad Hadi Movahednejad
  • Seyed Iman Saedi
Agriculture faculty, shahrood university of technology, shahrood, iran
چکیده [English]

The development of intelligent irrigation systems with the aim of providing the plant with water in a timely and adequate manner is an important strategy to increase the quantity and quality of agricultural products with minimal water consumption. On the other hand, determining the amount of water required by the plant largely depends on an accurate estimate of evapotranspiration in vegetation. In this study, neural network model was used to estimate the evapotranspiration in a lettuce hydroponic rotary culture system. The actual evapotranspiration of lettuce in the hydroponic cultivation system was estimated in order to design the irrigation system with the help of fuzzy logic model. Cultivation time was 30 days and data sampling time from temperature and humidity sensor was 10 minutes. According to the desired results obtained from the evaluation of the planted crop and water consumption, the efficiency of fuzzy model was proved. Therefore, it was used as a criterion for validating the neural network model of this study. The data volume for the neural network model was about 4500, which was randomly divided into three parts, 70% (training), 15% (evaluation) and 15% (test). Different ANN structures were evaluated to find the most suitable neural network architecture. The best result was achieved with BR algorithm with three hidden layers in an 8-10-10 topology and tansig transfer function in three hidden layers and output layer. For this architecture, the absolute error and coefficient of determination were 0.43 and 99.98%, respectively. Furthermore, considering a simple single layer network (one hidden layer), the BR algorithm with 8 neurons and logsig and tansig transfer functions for the hidden and output layers, were selected as the best model. The error and coefficient of determination of this structure were 0.79 and 98.84%, respectively. According to the sensitivity analysis, humidity and temperature were the most important parameters in predicting evapotranspiration, respectively.

کلیدواژه‌ها [English]

  • evapotranspiration
  • Neural Network
  • lettuce
  • Hydroponic culture
  • Fuzzy logic
انتصاری، م.، حیدری، ن.، خیرابی، ج.، علائی، م.، فرشی، ع. ا.، و وزیری، ژ. 1386. کارایی مصرف آب درکشت گلخانه‌ای. کمیته ملی آبیاری و زهکشی ایران.
بیات ورکشی، م.، زارع ابیانه، ح. ،معروفی، ص.، سبزی پرور. ع.ا.، و سلطانی، ف. 1388. شبیه‌سازی تبخیر-تعرق روزانه گیاه مرجع به روش هوش مصنوعی و روش‌های تجربی در مقایسه با اندازه‌گیری‌های لای سی متری در اقلیم نیمه‌خشک سرد همدان. 16(4): 79-100
پیرمرادیان، ن.، و ابول پور، ن. 1389. تخمین تبخیر- تعرق بالقوه گیاه مرجع با استفاده از منطق فازی و شبکه عصبی مصنوعی. مجله علوم زیستی واحد لاهیجان، 4(3):21-34
زارع ابیانه، ح.، بیات ورکشی، م.، و معروفی، ص. 1390. محاسبه تبخیر-تعرق واقعی گیاه سیر به روش مدل‌سازی چندگانه تحت شرایط کاشت لایسیمتر. مجله پژوهش‌های حفاظت آب و خاک 18(2):141-158.
ساعدی، ا.، علیمردانی، ر. ،موسی زاده، ح.، و صالحی، ر. 1397. طراحی و پیاده‌سازی دستگاه کشت هیدروپونیک دوار خورشیدی مجهز به سامانه هوشمند آبیاری. ماشین‌های کشاورزی. 8(2). 279-294
علیزاده، ا. 1390. رابطه آب و خاک. انتشارات دانشگاه امام رضا.
قبائی سوق، م،. مساعدی ا. حسام، م.، و هزارجریبی، ا. 1389. ارزیابی تأثیر پیش‌پردازش پارامترهای ورودی به شبکه عصبی مصنوعی (ANNs) با استفاده از روش‌های رگرسیون گام‌به‌گام و گاما تست به‌منظور تخمین سریع‌تر تبخیر و تعرق روزانه. نشریه آب و خاک. 24(3): 624-610.
کریمی، س.، شیری، ج.، و ناظمی، ا.ح. 1392. تخمین تبخیر-تعرق روزانه گیاه مرجع با استفاده از دستگاه‌های هوش مصنوعی (ANFIS و ANN) و معادله‌های تجربی. نشریه دانش آب و خاک 2(23): 139-158
مؤذن‌زاده، ز. 1394. اندازه­گیری و مدل‌سازی تبخیر-تعرق خیار در شرایط درون گلخانه. نشریه آب و خاک. 29(5): 1247-1261.
Abudu, S., Bawazir A.S., and King J.P. 2010. Infilling Missing Daily Evapotranspiration Data Using Neural Networks. Journal of Irrigation and Drainage Engineering, 136(5): 317-325.
Antonopoulos, V.Z. and Antonopoulos, A.V. 2017. 'Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables', Computers and Electronics in Agriculture. 132: 86-96.
Bormann, H. 2011. Sensitivity Analysis Of 18 Different Potential Evapotranspiration Models To Observed Climatic Change At German Climate Stations. Climatic Change 104:729–753.
Ciolkosz, D.E., Albright, L.D. and Both, A.J. 1998. Characterizing Evapotranspiration In A Greenhouse Lettuce Crop. Acta Hortic. 456, 255-262.
Cobaner, M. 2011. Evapotranspiration estimation by two different neuro-fuzzy inference systems. Journal of Hydrology. 398: 292-302.
Demuth, H. and Beale, M. 2009. Neural Network Toolbox For Use with MATLAB. The MathWorks. Inc.
Dou, X. and Yang, Y. 2018. Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems', Computers and Electronics in Agriculture. 148: 95-106.
Ed-Dahhak, A., Guerbaoui, M., ElAfou, Y., Outanoute, M., Lachhab, A., Belkoura, L., and Bouchikhi, B. 2013. Implementation of fuzzy controller to reduce water irrigation in greenhouse using LabView, International Journal of Engineering and Advanced Technology Studies. 1: 12-22.
Evans, R., Sneed, R.E. and Cassel, D.K. 2006. Irrigation scheduling to improve water and energy use efficiencies (North Carolina Cooperative extension Service).
Ji, R. Qi, L. and Huo, Z. 2012. 'Design of fuzzy control algorithm for precious irrigation system in greenhouse', Computer and Computing Technologies in Agriculture. V: 278-83.
Jovic, S. Nedeljkovic, B. Golubovic, Z. and Kostic, N. 2018. Evolutionary algorithm for reference evapotranspiration analysis. Computers and Electronics in Agriculture. 150: 1-4.
Javadi Kia, P., Tabatabaee Far, A., Omid, M., Alimardani, R. and Naderloo, L. 2009. 'Intelligent control based fuzzy logic for automation of greenhouse irrigation system and evaluation in relation to conventional systems', World Applied Sciences Journal. 6: 16-23.
Mathieu, J.J. and Albright, L.D. 2002. Evaluation of Crop Evapotranspiration Rates for Use in Fault Detection in Hydroponic Systems.ASAE Annual Meeting. The American Society of Agricultural and Biological Engineers. www.asabe.org.
Mascarini, L., Delfino, O.S. and Vilella, F. 2001. Evapotranspiration Of Two Gerbera Jamesonii Cultivars In Hydroponics: Adjustment Of Models For Greenhouses. Acta Hortic. 554, 261-270
Kişi, Ö. and Öztürk, Ö. 2007. Adaptive neurofuzzy computing technique for evapotranspiration estimation. Journal of Irrigation and Drainage Engineering. 133: 368-379.
Neto, A.J.S. Zolnier, S. and Lopes, D.C. 2014. Development and evaluation of an automated system for fertigation control in soilless tomato production. Computers and electronics in agriculture. 103: 17-25.
Pal, M. and Deswal, S. 2009. M5 model tree based modeling of reference evapotranspiration. Hydrological Processes. 23(10): 1437-1443.
Patil, A.P. and Deka, P.C. 2016. 'An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs', Computers and Electronics in Agriculture. 121: 385-92.
Reis, M.M., Silva, A.J.S., Junior, J.Z., Santos, L.D.T., Azevedo, A.M. and Lopes, É.M.G. 2019. 'Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data', Computers and Electronics in Agriculture. 165: 104937.
Reuter, D.C. and Everett, R.S. 2000. 'Control theory and applications: Neural-fuzzy controller for lawn irrigation.'
Saggi, M.K. and Jain, S. 2019. 'Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning', Computers and Electronics in Agriculture. 156: 387-98.
Shiri, J., Nazemi, A.H., Sadraddini, A.A., Landeras, G., Kisi, O., Fard, A.F., and Marti, P. 2013. Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration. Journal of hydrology. 480: 46-57.
Tang, D., Feng, Y., Gong, D., Hao, W., and Cui, N. 2018. 'Evaluation of artificial intelligence models for actual crop evapotranspiration modeling in mulched and non-mulched maize croplands', Computers and Electronics in Agriculture. 152: 375-84.