The effect of different levels of aerated saline water on the yield and water productivity of tomato plant in greenhouse

Document Type : Original Article

Authors

1 Assistant Professor- Agricultural Engineering Research Department - Isfahan Agricultural and Natural resources Research and Education crnter, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran.

2 Assistant Professor, Agricultural Engineering Research Department, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran

Abstract

An experiment was conducted with greenhouse tomato plants to determine the effects of oxygen enrichment of the irrigation water on yield and yield components. The study was conducted based on randomized complete blocks as a split plot design with 4 replicates and 3 treatments for 2 years. It is possible to simultaneously irrigate and provide roots with sufficient oxygen via injection of ambient air by means of a venturi coupled to a subsurface drip irrigation system (SDI) called as oxygation. In this study, three levels of irrigation water aeration comprising 0 (the Control), 12 and 24 volumetric percent (i.e. air volume/water volume) was applied to tomato plants grown on a saline clay soil and saline water in a greenhouse in Esfahan Agricultural Research Centre. The type and amount of the required fertilizers were determined from the analysis of soil samples. Tomato plant growth was promoted under conditions which facilitated consistently high oxygen in the root zone. The differences between the aeration treatments and the zero aeration control were significant at the 5% level only for the fruit diameter, fruit length, the number of fruit and total fruits weight. There were no significant effects (P > 0.05) between control and aeration levels for height plant, root dry mater and plant dry mater. The results also showed that the values of yield and water productivity in the treatment of 24% oxygenation compared to the control treatment increased by 21.7% and 21.5%, respectively. Data from this study indicate that tomato production in saline soils and saline water can be improved under SDI if the subsurface drip irrigation is aerated.

Keywords


ترابی، م. 1394. تأثیر سطوح مختلف تهویه آب آبیاری بر پارامترهای رشد و محصول فلفل دلمه‌ای در گلخانه. گزارش نهایی موسسه تحقیقات فنی و مهندسی کشاورزی، شماره ثبت: ۴۸۲۵۱.
ترابی، م.، میدمور، د.ج.، والش، ک.ب. و باترای، س.پ. 1393. بهبود یکنواختی توزیع بده هوای خروجی از قطره‌چکان‌ها در سامانه‌های اکسیژن- آبیاری. نشریه حفاظت منابع آب و خاک. 4 .1: 79-89.
سیفی، ا. 1393. مدیریت شوری خاک و اکسیژن-کودآبیاری باغات پسته تحت سیستم آبیاری قطره‌ای زیرسطحی. رساله دکتری مهندسی آبیاری و زهکشی، دانشگاه تربیت مدرس.
سیفی، ا.، میرلطیفی، س. م.، دهقانی سانیج، ح. و ترابی، م. 1393. تأثیر دور آبیاری بر توزیع رطوبت و شوری در باغ‌های پسته تحت شرایط آبیاری قطره‌ای زیرسطحی (مطالعه موردی: شهرستان سیرجان استان کرمان). نشریه آبیاری و زهکشی ایران. 4 .8: 786-799.
فرزام‌نیا، م.، میران‌زاده، م. و جهاد اکبر م. ر. 1394. برنامه‌ریزی آبیاری گوجه‌فرنگی گلخانه‌ای با استفاده از تشت تبخیر کلاس A. مجله علوم و فنون کشت‌های گلخانه‌ای. 6 .1: ۱۵-۲۹.
کرمی، م.، نوری امامزاده‌ئی، م. ر.، قبادی‌نیا، م. و محمدخانی، ع. ۱۳۹۵. تأثیر سطوح مختلف هوادهی بر عملکرد و کارآیی مصرف آب گیاه فلفل قلمی تحت سطوح مختلف شوری آب آبیاری و بافت خاک. اولین همایش ملی عرضه و تقاضای آب شرب و بهداشت، چالش‌ها و راهکارها. اصفهان، دانشگاه صنعتی اصفهان.
Algharibi, E., Schmitz, G., Lennartz, F., Schütze, N., Grundmann, J. and Kloss, S. 2013. Evaluation of field and greenhouse experiments with tomatoes using the aquacrop model as a basis for improving water productivity. In International Conference on Water Resources and Environment Research.
Bhattarai, S.P. 2005. The physiology of water use effciency of crops subjected to subsurface drip irrigation, oxygation and salinity in a heavy clay soil. Ph.D. Thesis. Faculty of Arts, Health and Sciences, Central Queensland University, Australia.
Bhattarai, S.P., Pendergast, L. and Midmore, D.J. 2006. Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils. Scientia horticulturae. 108.3: 278-288.
Chen, H., Shang, Z.H., Cai, H.J. and Zhu, Y. 2019. An Optimum Irrigation Schedule with Aeration for Greenhouse Tomato Cultivations Based on Entropy Evaluation Method. Sustainability. 11.16: 4490.
Du, Y.D., Niu, W.Q., Gu, X.B., Zhang, Q., Cui, B.J. and Zhao, Y. 2018. Crop yield and water use efficiency under aerated irrigation: A meta-analysis. Agricultural Water Management. 210:158-164.
Du, Y.D., Zhang, Q., Cui, B.J., Sun, J., Wang, Z., Ma, L.H. and Niu, W.Q. 2020. Aerated irrigation improves tomato yield and nitrogen use efficiency while reducing nitrogen application rate. Agricultural Water Management. 235: 106152.
Li, Y., Niu, W., Cao, X., Zhang, M., Wang, J. and Zhang, Z. 2020. Growth response of greenhouse-produced muskmelon and tomato to sub-surface drip irrigation and soil aeration management factors. BMC Plant Biology. 20.1: 1-15.
Pendergast, L. and Midmore, D. 2006. Oxygation: Enhanced root function, yields and water use efficiencies through aerated subsurface drip irrigation, with a focus on cotton. In The 13th Australian Agronomy Conference, Perth, Australia.
Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E. 2009. AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal. 101.3: 438-447.
Rodrigues do Nascimento, J.M., Rezende, R., de Castro Seron, C., de Souza, C., Henrique, Á. and Barion Alves Andrean, A.F. 2020. Tomato production as a function of aeration levels after subsurface drip irrigation. Pesquisa Agropecuária Tropical, 50.
Seifi, A. and Mirlatifi, S.M. 2020. Irrigation water use efficiency and yield of pistachio under aerated subsurface drip irrigation system. Journal of Agricultural Science and Technology (Accepted).
Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E. 2009. AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal. 101.3: 426-437.
Torabi, M. 2010. Optimizing oxygen delivery in subsurface drip irrigation. Ph.D. Thesis. Centre for Plant & Water Science, Faculty of Sciences, Engineering and Health, CQUniversity Australia.
Torabi, M., Midmore, D.J., Walsh, K.B. and Bhattarai, S.P. 2014. Improving the uniformity of emitter air bubble delivery during oxygation. Journal of Irrigation and Drainage Engineering. 140.7: 06014002.
Torabi, M., Midmore, D.J., Walsh, K.B., Bhattarai, S.P. and Tait, L. 2013. Analysis of factors affecting the availability of air bubbles to subsurface drip irrigation emitters during oxygation. Irrigation science. 31.4: 621-630.
Yan, Z.H.U., Dyck, M., CAI, H.J., SONG, L.B. and Hui, C.H.E.N., 2019. The effects of aerated irrigation on soil respiration, oxygen, and porosity. Journal of Integrative Agriculture. 18.12: 2854-2868.
Zhu, Y., Cai, H., Song, L. and Chen, H. 2019. Aerated Irrigation Promotes Soil Respiration and Microorganism Abundance around Tomato Rhizosphere. Soil Science Society of America Journal. 83.5: 1343-1355.