پیش‌بینی تبخیر‌- تعرق مرجع روزانه با استفاده از روش ترکیبی هوشمند مصنوعی بر پایه الگوریتم پیش‌پردازش‌کننده تجزیه مد تجربی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشگاه ارومیه

2 استاد گروه مهندسی آب، دانشگاه ارومیه، ارومیه، ایران

3 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه

4 دکتری مهندسی آّب، دانشگاه ارومیه

چکیده

تبخیر- تعرق به عنوان یکی از اجزاء مهم چرخه هیدرولوژیک نقش بسیار مهمی در بررسی بیلان آبی حوضه‌های آبریز دارد. در محاسبه نیاز آبی گیاهان، ابتدا مقدار تبخیر- تعرق مرجع محاسبه و سپس با استفاده از آن، تبخیر-تعرق گیاهی محاسبه می‌شود. در این تحقیق جهت برآوردی دقیق از مقدار تبخیر- تعرق مرجع روزانه حوضه آبریز دریاچه ارومیه، ابتدا براساس روش استاندارد فائو- پنمن- مونتیث و داده‌های هواشناسی سه ایستگاه ارومیه، مهاباد و خوی، مقدار تبخیر- تعرق مرجع) (ET0 محاسبه شد. سپس با استفاده از آنالیز ضریب مالو، موثرترین پارامترها جهت استفاده در مدلهای مورد استفاده مشخص گردید. در این تحقیق از مدل درخت MT که بر اساس الگوریتم استنتاجی کلاس‌بندی توسعه پیدا کرده است، استفاده گردید. برای مقابله با پیچیدگی و ناپایداری داده‌های سری زمانی تبخیر-تعرق از الگوریتم پیش‌پردازش‌کننده تجزیه مد تجربی (EMD) استفاده و نتایج به دست آمده با روابط تجربی تعیین تبخیر-تعرق مرجع شامل روشهای Romanenko و Schendel مقایسه گردید. نتایج تحقیق نشان داد که عملکرد مدل درخت به شکل منفرد MT، مشابه و گاهی کمتر از عملکرد شبکه عصبی مصنوعی بود. با این حال ترکیب مدل درخت با تکنیک EMD باعث افزایش دقت مدل و کاهش خطا در شبیه‌سازی روزانه در ایستگاه های ارومیه، مهاباد و خوی گردید. نتایج نشان داد که در مرحله آزمون ترکیب روش MT با EMD باعث ارتقا شاخص همبستگی به میزان 02/1% ، 39/4% و 04/2% به ترتیب برای ایستگاه‌های ارومیه، مهاباد و خوی گردید. همچنین میان روابط تجربی، رابطه Romanenko نسبت به رابطه تجربی Schendel دارای دقت بالاتری بوده و می‌توان رابطه Romanenko را برای مدل سازی تبخیر-تعرق مرجع برای منطقه مورد مطالعه توصیه نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of daily reference evapotranspiration using hybrid artificial intelligence method based on empirical mode decomposition

نویسندگان [English]

  • Amin Amirashayeri 1
  • Javad Behmanesh 2
  • Vahid Rezaverdinejad 3
  • Nasrin Fathollahzadeh Attar 4
1 Department of Water Engineering, Urmia University
2 Professor of Water Engineering, Department of Water Engineering, Urmia University. Urmia. Iran
3 Department of Water Engineering, Urmia University, Iran
4 Urmia University
چکیده [English]

Evapotranspiration (ET) is one of the essential components of the hydrological cycle, which plays a crucial role in the study of a watershed water balance. In calculating the water requirement of plants, it is essential to calculate the reference evapotranspiration, and then, the crop evapotranspiration is estimated using the calculated value. In the present research, for accurate determining of daily reference evapotranspiration of Lake Urmia watershed, three stations of the watershed, including Urmia, Mahabad, and Khoy, were selected and daily reference evapotranspiration values were calculated based on the standard FAO-Penman-Monteith method. The best input parameters for modeling reference evapotranspiration were selected based on Malo’s coefficient. The MT model, which is used in the current study, is one of the inference-classification algorithms. To deal with the complexity and instability of time series data, the empirical mode decomposition (EMD) preprocessing algorithm was used. The results of the methods were compared with the empirical relationships of Romanenko and Schendel. The results of this study show that although the tree modeling method performs relatively equal and sometimes weaker than the ANN method, the combination with EMD technique increases the accuracy of the model and reduces the error in daily ET0 prediction. According to the results, the EMD-MT method in correlation coefficient index for Urmia, Mahabad, and Khoy stations increased 1.02%, 4.39%, and 2.04%, respectively. Also, among the empirical relations, the Romanenko relation is more accurate than the Schendel equation, and it is a reliable empirical model.

کلیدواژه‌ها [English]

  • empirical mode decomposition
  • Reference Evapotranspiration
  • Model tree
  • prediction
بهمنش، ج.، آزاد طلاتپه، ن.، منتصری. م.، و بشـارت، س. 1393. ارزیـابی مدل‌های سری زمانی خطی و غیر خطی بیلینییر در پـیش­بینی تبخیر -تعرق گیاه مرجع در ایستگاه سـینوپتیک ارومیه. نشـریه پژوهش آب در کشاورزی. جلد 28، شماره 1.
حسن پور ب.، میرزایی، ف.، ارشد، ص. و کوثری، ه. 1391. مقایسه الگوریتم­های SEBAL و S-SEBI در برآورد تبخیر و تعرق در منطقه کرج، نشریه آب و خاک، جلد 26، شماره 6.
سیفی ا.، میر لطیفی س.م. و ریاحی ح. 1389. توسعه مدل ترکیبی رگرسیون چندگانه-تحلیل مؤلفه ها و عامل هـای اصـلی (MLR-PCA)در پیش بینی تبخیر و تعرق مرجع (مطالعه موردی: ایستگاه کرمان)، نشریه آب و خاک. جلد 24. شماره 6.
گودرزی م.، صلاحی ب.، حسینی س. ا. 1394. بررسی تغییرات اقلیمی بر تغییرات رواناب سطحی (مطالعه موردی: حوضه آبریز دریاچه ارومیه)، نشریه اکوهیدرولوژی، دوره 2، شماره 2.
Allen, R.G., Pereira, L.S., Rae’s, D., and Smith, M. 1998. Crop evapotranspiration. Guide lines for computing crop evapotranspiration. FAO Irrigation and Drainage Paper No 56. Rome, Italy.
Al-Musaylh, M.S., Deo, R.C., Li, Y., and Adamowski, J. F. 2018. Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting. Applied energy, 217, 422-439.
Ali, M., and Prasad, R. 2019. Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition. Renewable and Sustainable Energy Reviews, 104, 281-295.
Chen, N., Zhang, Y., Jin, C., Wang, A., Guan, D., and Tian, L. 2018. Intercomparison of three methods to estimate evapotranspiration over temperate meadow in Inner Mongolia: Penman–Monteith, Makkink and Priestley–Taylor equation. Water and environment journal, 32(4), 500-507.
Cheng, Y., Wang, Z., Chen, B., Zhang, W., and Huang, G. 2019. An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis. ISA transactions.
Deo, R.C., Downs, N., Parisi, A.V., Adamowski, J.F., and Quilty, J.M. 2017. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle. Environmental research, 155, 141-166.
Fijani, E., Barzegar, R., Deo, R., Tziritis, E., and Konstantinos, S. 2019. Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters. Science of the total environment, 648, 839-853.
Ghaemi, A., Rezaie-Balf, M., Adamowski, J., Kisi, O., and Quilty, J. 2019. On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction. Agricultural and Forest Meteorology, 278, 107647.
Huang, Y., Yang, L., Liu, S., and Wang, G. 2019. Multi-Step Wind Speed Forecasting Based On Ensemble Empirical Mode Decomposition, Long Short Term Memory Network and Error Correction Strategy. Energies, 12(10), 1822.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., and Liu, H.H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995.
Kakahaji, H., Banadaki, H.D., Kakahaji, A., and Kakahaji, A. 2013. Prediction of Urmia Lake water-level fluctuations by using analytical, linear statistic and intelligent methods. Water resources management, 27(13), 4469-4492.
Kişi, Ö., and & Öztürk, Ö. 2007. Adaptive neurofuzzy computing technique for evapotranspiration estimation. Journal of Irrigation and Drainage Engineering, 133(4), 368-379.
Kumar, M., Raghuwanshi, N. S., Singh, R., Wallender, W.W., and Pruitt, W.O. 2002. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering, 128(4), 224-233.
Moghaddamnia, A., Gousheh, M.G., Piri, J., Amin, S., and Han, D. 2009. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources, 32(1), 88-97.
Quinlan, J.R. 1992. Learning with continuous classes. In 5th Australian joint conference on artificial intelligence (Vol. 92, pp. 343-348).
Rahimi, K.A. 2011. A prediction of maximum monthly precipitation recorded at Ilam meteorological station based on Persian Gulf and Red Sea surface temperature through recordings data mining method. Iranian journal of soil and water research, 42-1.
Rezaie-balf, M., Naganna, S.R., Ghaemi, A., and & Deka, P.C. 2017a. Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. Journal of hydrology, 553, 356-373.
Rezaie-Balf, M., Zahmatkesh, Z., and Kim, S. 2017b. Soft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methods. Water Resources Management, 31(12), 3843-3865.
Rezaie-Balf, M., Kisi, O., and Chua, L.H. 2019. Application of ensemble empirical mode decomposition based on machine learning methodologies in forecasting monthly pan evaporation. Hydrology Research, 50(2), 498-516.
Solomatine, D.P., and Dulal, K.N. 2003. Model trees as an alternative to neural networks in rainfall—runoff modelling. Hydrological Sciences Journal, 48(3), 399-411.
Sudheer, K.P., Gosain, A.K., and Ramasastri, K.S. 2003. Estimating actual evapotranspiration from limited climatic data using neural computing technique. Journal of Irrigation and Drainage Engineering, 129(3), 214-218.
Taheri, M., Emadzadeh, M., Gholizadeh, M., Tajrishi, M., Ahmadi, M., and Moradi, M. 2019. Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin. Agricultural water management, 213, 782-791.
Traore, S., Luo, Y., and Fipps, G. 2017. Gene-expression programming for short-term forecasting of daily reference evapotranspiration using public weather forecast information. Water resources management, 31(15), 4891-4908.
Zhou, L., Meng, Y., and Abbaspour, K.C. 2019. A new framework for multi-site stochastic rainfall generator based on empirical orthogonal function analysis and Hilbert-Huang transform. Journal of Hydrology, 575, 730-742.
Schendel, U. 1967. Vegetations was serverbrauch und- wasserbedarf. Habilitation, Kiel, 137 pp.
Romanenko, V.A. 1961. Computation of the autumn soil moisture using a universal relationship for a large area. Proceedings. Ukrainian. Hydrometeorol. Res. Inst. 3, 12–25