مقایسه ی الگوریتم های داده کاوی در پیش بینی نتیجه ی مناقصات بین المللی برگزار شده برای انتخاب مشاوران صنعت آب (به منظور استفاده در سیستم های پشتیبان تصمیم گیری)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیرت پروژه و ساخت، دانشکده معماری، دانشگاه تهران، تهران، ایران

2 دانشیار گروه مدیریت پروژه و ساخت، دانشکده معماری، دانشگاه تهران، تهران، ایران

3 دانشجوی کارشناسی ارشد، گروه مدیریت پروژه و ساخت، دانشکده معماری، دانشگاه تهران، تهران، ایران

چکیده

در کشورهای در حال توسعه با ارزش پولی پایین، شرکت های مشاوره برای کسب سود بیشتر به دنبال شرکت کردن در پروژه های بین المللی می باشند. اما شرکت در مناقصات بین المللی نیازمند صرف منابع زیادی (زمان، هزینه و منابع انسانی) برای خرید اسناد مناقصه، ارزیابی شرایط پروژه و آماده کردن پیشنهاد مناقصه است. از این رو پیش‌بینی نتیجه‌ مناقصات بین المللی می تواند باعث جلوگیری از مصرف منابع برای شرکت در مناقصات نامناسب شود. هدف از این پژوهش شناسایی معیارهای موثر در نتیجه مناقصات بین المللی برگزار شده برای انتخاب مشاوران صنعت آب و مقایسه الگوریتم های داده کاوی در پیش بینی نتیجه این مناقصات است. معیارهای شناسایی شده شامل نوع امور تخصصی، نحوه ارسال پیشنهاد مناقصه، چگونگی آشنایی با مناقصه، نوع مناقصه، تامین کننده مالی، داشتن همکار در کشور مبدا و نوع پروژه می باشند و الگوریتم های مقایسه شده به ترتیب دقت شامل ماشین بردار پشتیبانی، Chaid، ID3، درخت تصمیم، بیز ساده و نزدیک ترین همسایه هستند. از میان الگوریتم های مذکور، الگوریتم ماشین بردار پشتیبانی با دقت 89.31 درصد دارای بیشترین دقت می باشد. بنابراین پیشنهاد می شود که از این الگوریتم به عنوان پردازشگر در سیستم های پشتیبان تصمیم مناقصات استفاده شود تا موجب بهبود تصمیم به شرکت/عدم شرکت مشاوران در مناقصات بین المللی صنعت آب شود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of data mining algorithms in predicting the results of international tenders held to select water industry consultants (for use in decision support systems)

نویسندگان [English]

  • Hadi ُShakiba Zahed 1
  • Majid Parchami Jalal 2
  • Mohammad Amin Ghaaderi 3
1 PhD Candidate, Project Management and Construction Department, Architecture Faculty, University of Tehran, Tehran, Iran
2 professor assistant, Project Management and Construction Department, Architecture Faculty, University of Tehran, Tehran, Iran
3 Masters Student, Project Management and Construction Department, Architecture Faculty, University of Tehran, Tehran, Iran
چکیده [English]

In developing countries where the value of money is low, consultant firms are keen to participate in international tenders. Participating in international tenders requires a lot of resources (time, cost, etc.) to evaluate the project condition and prepare a suitable proposal. Predicting the outcome of these tenders is important because it can prevent the use of resources to participate in inappropriate tenders. The aim of this paper is to identify factors that affect the outcome of water industry international tenders holding for selection of consultants and compare the classification algorithms in predicting the outcome of this tenders. effective factors include Lead department, Documents delivery method, Tender Identify Method, Type of Tender, Financer, Lead Department Partner, Final Status and Project Type and Compared algorithms include Decision Tree, ID3, Chaid, K-Nearest Neighbor (KNN), Naïve Bayes and Support Vector Machine (SVM). The most accurate algorithms are 1-SVM, 2-Chaid, 3-ID3, 4-Decision Tree, 5-Naïve Bayes and 6-KNN. so It is suggested to use the SVM algorithm as the processor in decision support systems to improve the bid/no-bid decision for consultant firms seeking to participate in the water industry international tenders.

کلیدواژه‌ها [English]

  • Water Industry Tenders
  • Classification Algorithms
  • Data mining
  • Decision Making
Al-Humaidi, H.M. 2016. ‘Construction projects bid or not bid approach using the fuzzy technique for order preference by similarity FTOPSIS method’, Journal of Construction Engineering and Management. American Society of Civil Engineers, 142(12): 4016068.
Biruk, S., Jaśkowski, P. and Czarnigowska, A. 2017. ‘Modeling contractor’s bidding decisions’, Procedia Engineering. Elsevier, 182: 91–98.
Chapman, P. et al. 1999. ‘The CRISP-DM user guide’, in 4th CRISP-DM SIG Workshop in Brussels in March.
Cheng, M.-Y. et al. 2011. ‘Bidding decision making for construction company using a multi-criteria prospect model’, Journal of Civil Engineering and Management. Taylor & Francis, 17(3): 424–436.
Chisala, M.L. 2017. ‘Quantitative bid or no-bid decision-support model for contractors’, Journal of Construction Engineering and Management. American Society of Civil Engineers, 143(12): 4017088.
Chou, J.-S., Pham, A.-D. and Wang, H. 2013. ‘Bidding strategy to support decision-making by integrating fuzzy AHP and regression-based simulation’, Automation in Construction. Elsevier, 35: 517–527.
Costantino, N. et al. 2011. ‘A model for predicting the bid distribution in public tenders’, in Proceedings International Public Procurement Conference IPPC4, pp. 1–15.
El-Mashaleh, M.S. 2013. ‘Empirical framework for making the bid/no-bid decision’, Journal of Management in Engineering. American Society of Civil Engineers, 29(3): 200–205.
Jarkas, A.M., Mubarak, S.A. and Kadri, C.Y. 2014. ‘Critical factors determining bid/no bid decisions of contractors in Qatar’, Journal of Management in Engineering. American Society of Civil Engineers, 30(4): 5014007.
Jordan, M.I. and Mitchell, T.M. 2015.‘Machine learning: Trends, perspectives, and prospects’, Science. American Association for the Advancement of Science, 349(6245): 255–260.
Juszczyk, M. et al. 2014. ‘Errors in the preparation of design documentation in public procurement in Poland’, Procedia Engineering. Elsevier, 85: 283–292.
Kalan, D. and Ozbek, M.E. 2020. ‘Development of a Construction Project Bidding Decision-Making Tool’, Practice Periodical on Structural Design and Construction. American Society of Civil Engineers, 25(1): 4019032.
Landeta, J. 2006. ‘Current validity of the Delphi method in social sciences’, Technological forecasting and social change. Elsevier, 73(5): 467–482.
Leśniak, A. and Plebankiewicz, E. 2013. ‘Modeling the decision-making process concerning participation in construction bidding’, Journal of Management in Engineering. American Society of Civil Engineers, 31(2): 4014032.
Leśniak, A. and Radziejowska, A. 2017. ‘Supporting bidding decision using multi-criteria analysis methods’, Procedia engineering. Elsevier, 208: 76–81.
Lowe, D.J. and Parvar, J. 2004. ‘A logistic regression approach to modelling the contractor’s decision to bid’, Construction Management and Economics. Taylor & Francis, 22(6): 643–653.
Minli, Z. and Shanshan, Q. 2012. ‘Research on the application of artificial neural networks in tender offer for construction projects’, Physics Procedia. Elsevier, 24: 1781–1788.
Oo, B., Drew, D.S. and Lo, H.P. 2007. ‘Applying a random coefficients logistic model to contractors’ decision to bid’, Construction Management and Economics. Taylor & Francis, 25(4): 387–398.
Parchamijalal, M., Shakibazahed, H. and Ghaaderi, M.A. 2020. ‘Comparison of questionnaire and text mining in identifying the criteria that affect the bid/no-bid decision of Consultant firms in international bidding for the water industry’, Iranian Journal of Irrigation & Drainage, 14(2).
Polat, G., Bingol, B.N. and Uysalol, E. 2014. ‘Modeling Bid/No bid decision using adaptive neuro fuzzy inference system (ANFIS): a case study’, in Construction Research Congress, pp. 1083–1092.
Tan, Y., Shen, L. and Langston, C. 2010. ‘Contractors’ competition strategies in bidding: Hong Kong study’, Journal of construction engineering and management. American Society of Civil Engineers, 136(10): 1069–1077.
Wanous, M., Boussabaine, A. and Lewis, J. 2000. ‘To bid or not to bid: a parametric solution’, Construction Management & Economics. Taylor & Francis, 18(4): 457–466.
Wanous, M., Boussabaine, H.A. and Lewis, J. 2003. ‘A neural network bid/no bid model: the case for contractors in Syria’, Construction Management and economics. Taylor & Francis, 21(7): 737–744.
Zhang, F., Wang, W. and Xu, S. 2014. ‘Six Kinds of Bidding Risk Prediction Model Based on Multiple Attribute Decision-Making Theories and Its Application’, in CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems, pp. 3280–3291