Application of the energy balance model to predict transpiration and microclimate conditions inside the greenhouse using meteorological data

Document Type : Original Article

Authors

1 Ph.D. Candidate, Department of Irrigation and Drainage, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

2 Professor, Department of Irrigation and Drainage, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

3 Associate Professor, Department of Mechanical Engineering, Faculty of Engnirreing, Bu-Ali Sina University, Hamadan, Iran

Abstract

In recent years, increasing population and limited water and arable land in Iran have led to significant investment in greenhouse production. Due to the effect of greenhouse microclimate conditions on the quantitative and qualitative yield of the product, the use of mathematical models to study and microclimate simulation of the greenhouse is necessary. The objective of this research is to apply and analyze an energy balance model using meteorological data outside the greenhouse to simulate microclimate conditions and the transpiration in a greenhouse. The study was conducted in a commercial greenhouse with plastic cover and an area of 4333 square meters. Temperature and relative humidity data were collected inside the greenhouse with 21 data loggers. For collected meteorological data outside the greenhouse, the meteorological station installed on the roof of the greenhouse and the data of the Tuyserkan synoptic meteorological station were used. A combination of energy balance and transpiration equation was used to estimate temperature, relative humidity and crop transpiration inside the greenhouse. Estimated transpiration was modified by combining the energy balance model and the Stanghellini transpiration equation. The pattern of temporal variation of the simulated and measured values of temperature and relative humidity inside the greenhouse was similar. The root mean square error of the simulated temperature for mechanical ventilation and natural ventilation was 0.72 and 0.67, 0.83 and 0.77 daily, and 0.49 and 0.49 degrees Celsius, respectively, for the daytime and night time. The root mean square error of relative humidity for mechanical and natural ventilation was 4.4% day and night, 3.0% for daytime, and 6.0% for night time. After modifying the simulation model, four days of microclimate inside the greenhouse showed that the temperature inside the greenhouse reaches 35 °C during the day and less than 16 °C at night, which are not in the optimal temperature range for greenhouse cucumbers. Due to high temperature (35º C) and low humidity (15% to 30%), evaporative cooling will be required at some hours of the day. The total simulated transpiration was 30.2 mm. The estimated temperature was acceptable, but the estimated relative humidity at night differed from the measured values due to thermal inversion. Estimated transpiration was modified by combining the energy balance model and the Stanghellini transpiration equation. After verifying and modifying the model, the microclimate conditions of the greenhouse were simulated and analyzed for four days. The results showed that by using the energy level model before the construction of the greenhouse, it is possible to estimate the microclimate conditions of the greenhouse and the water requirement of the crop.

Keywords


رضوانی، س. م.، زارع ابیانه، ح.، گودرزی، م. 1398. توزیع تعرق و کمبود فشار بخار در گلخانه­ی تجاری.نشریه آبیاری و زهکشی ایران. (5) 13. 1203-1191.
زارعی، ق. 1396. چالش­های سازه­های گلخانه­ها در ایران. مجله پژوهش­های راهبردی در علوم کشاورزی و منابع طبیعی. 2 (2): 162-149.
زارعی، ق.، سالمی، ح.، ر.، رضوانی، س.، و اسفندیاری، ص. 1397. تعیین نیاز آبی خیار گلخانه­ای در سطح کشور. گزارش نهایی پژوهشی. موسسه تحقیقات فنی و مهندسی کشاورزی. شماره ثبت 54247.
شرکت آب منطقه­ای همدان. 1397. سیمای آب در استان همدان.
خوشخوی،م.، مبلی، م.، عزیزی، م.، وحدتی، ک.، گریگوریان، و.، تفضلی، ع. 1396. بررسی مسائل و مشکلات گلخانه­ها و فرآورده­های گلخانه­ای در ایران. گزارش نهایی پژوهشی. فرهنگستان علوم جمهوری اسلامی ایران.
وزارت جهاد کشاورزی. عملکرد گلخانه­های کشور طی سال­های 93-1390. 1394. معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، تهران.
وزارت جهاد کشاورزی. گزارش اطلاعات سطح، تولید و عملکرد در هکتار محصولات باغبانی کل کشور در سال 1396. 1397. معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، تهران.
Ali, B. H., Bournet, P. E., Danjou, V., Morille, B., and Migeon, C. 2014. CFD simulations of the night-time condensation inside a closed glasshouse: Sensitivity analysis to outside external conditions, heating and glass properties. Biosystems Engineering. 127: 159–175.
Ali, B. H., Bournet, P. E., Cannavo, P., and Chantoiseau, E. 2018. Development of a CFD crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Computers and Electronics in Agriculture. 149: 26–40.
Ali, B. R., Bouadila, S. and Mami, A., 2020. Experimental validation of the dynamic thermal behavior of two types of agricultural greenhouses in the Mediterranean context. Renewable Energy. 147: 118-129.
Baptista, F. J., Bailey, B. J., Meneses, J. F., and Gracia, L. M. N. 2010. Greenhouses climate modelling: tests, adaptation and validation of a dynamic climate model. Spanish journal of agricultural research. 2: 285-298.
Bauri, B. and A. Ganguly. 2013. Effect of crop transpiration on the microclimate of a naturally ventilated greenhouse. International Journal of Emerging Technology and Advanced Engineering. 3(3): 337-343.
Boulard, A. and Baille, T. 1993. A simple greenhouse climate control model incorporating effects of ventilation and evaporative cooling.  Agricultural and forest meteorology.  65: 145-157.
Boulard, T., and Wang, S. 2000. Greenhouse crop transpiration simulation from external climate conditions. Agricultural and Forest Meteorology. 100(1): 25–34.
Castilla, N., 2013. Greenhouse technology and management. 2nd ed. CABI.
Chen, C., Shen, T. and Weng, Y. 2011. Simple model to study the effect of temperature on the greenhouse with shading nets. African Journal of Biotechnology, 10(25): pp.5001-5014.
Chen, J., Xu F., Tan, D., Shen, Z., Zhang, L.B., and Ai, Q.L. 2015. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Appl Energy. 141:61–8.
Donatelli, M., Bellocchi, G. and Carlini, L. 2006. Sharing knowledge via software components: Models on reference evapotranspiration. European Journal of Agronomy. 24: 186–192.
Fazlil-Ilahil, W.F. 2009. Evapotranspiration models in greenhouse. MSc, Wageningen agricultural University. Wageningen. Netherlands.
Fatnassi, H., Boulard, T., and Lagier, J. 2004. Simple indirect estimation of ventilation and crop transpiration rates in a greenhouse. Biosystems Engineering. 88 (4): 467–478.
Gruda, N., Sallaku, G. and Balliu, A., 2017. PART III: CROP TECHNOLOGIES: 2. Cucumber. In: Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., De Pascale, S., Nicola, S., Urban, L., Tany, J., and Duffy, R. (editors). Good agricultural practices for greenhouse vegetable production in the South East European countries: Principles for sustainable intensification of smallholder farms. FAO plant production and protection paper 230. Rome. Italy. Food and agricultural organization of the United Nations. 287-299.
Kichah, A., Bournet, P.E., Migeon, C., and Boulard, T. 2012. Measurement and CFD simulation of microclimate characteristics and transpiration of an Impatiens pot plant crop in a greenhouse. Biosystems Engineering, 112(1): 22–34.
Kim, K., Yoon, J. Y., Kwon, H. J., Han, J.-H., Eek Son, J., Nam, S. W., and Lee, I. B. 2008. 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerativedehumidifiers. Biosystems Engineering. 100(2): 245–255.
Kindelan, M. 1980. Dynamic modeling of greenhouse environment. Transactions of the ASAE, 23(5), 1232-1239.
Kumar, K. S., Jha, M. K., Tiwari, K. N., Singh, A. 2010. Modeling and evaluation of greenhouse for floriculture in subtropics. Energy and Buildings. 42:1075-1083.
Grange, R.L. and Hand, D.W., 1987. A review of the effects of atmospheric humidity on the growth of horticultural crops. Journal of Horticultural Science. 62: 125–134.
Kindelan, M. 1980. A dynamic modeling of greenhouse environment. Transactions of the ASAE. 23(5): 1232-1239.
Konopacki, P.J., Treder, W. and Klamkowski, K. 2018. Comparison of vapour pressure deficit patterns during cucumber cultivation in a traditional high PE tunnel greenhouse and a tunnel greenhouse equipped with a heat accumulator. Spanish Journal of Agricultural Research. 16 (1): 201.
Montero J. I., Antóna, A., Muñoza, P and Lorenzo, P.2001. Transpiration from geranium grown under high temperatures and low humidities in greenhouses. Agricultural and Forest Meteorology.107:323-332.
Prenger, J.J. and Ling, P.P., 2001. Greenhouse Condensation Control Understanding and Using Vapor Pressure Deficit (VPD). Fact Sheet AEX-804. The Ohio state University. Wooster OH. 4.
Prenger, J.J., Fynn, R.P. and Hansen, R.C. 2002. A comparison of four evapotranspiration models in greenhouse environment. Transactions of the ASAE. 45: 1779–1788.
Ponce, P., Molina, A., Cepeda, P., Lugo, E. and Maccleery, B. 2015. Greenhouse design and control. 1st ed. The Netherlands: CRC Press.
Rasheed, A., Kwak, C.S., Na, W.H., Lee, J.W., Kim, H.T. and Lee, H.W. 2020. Development of a Building Energy Simulation Model for Control of Multi-Span Greenhouse Microclimate. Agronomy. 10(9): 1236.
Roy, J.C., Boulard, T., Kittas, C. and Wang, S. 2002. Convective and ventilation transfers in greenhouses, Part 1: the greenhouse considered as a perfectly stirred tank. Biosystems Engineering. 83: 1-20.
Roy, J.C. and Boulard, T. 2005. CFD predictions of the natural ventilation in a tunnel type greenhouse: influence of wind direction and sensitivity to turbulence models. Acta Horticulturae 691: 457–464.
Ryer, A. 1998. Light Measurement handbook. Newburyport, MA: International Light. 64.
Salazar-Moreno, R., López-Cruz, I. L., and Sánchez Cruz, A. C. 2019. Dynamic energy balance model in a greenhouse with tomato cultivation: simulation, calibration and evaluation. Revista Chapingo. Serie horticultura. 25(1): 45-60. 
Sengar, S.H. and Kothari, S. 2008. Thermal modeling and performance evaluation of arch shape greenhouse for nursery raising. African Journal of Mathematics and Computer Science Research. 1(1): 001-009.
Shamshiri, R., Jones, J., Thorp, K.R., Ahmad, D., Man, H.C., and Taheri S., 2018. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International Agrophysics. 32: 287-302.
Wang, S., Deltour, J., and Smith, L., J. 2004. Leaf Temperature Modeling of Greenhouse Grown Tomato. International Agricultural Engineering Journal. 13(1and 2): 64-70.