ارزیابی مدل SWAP برای شبیه‌سازی دو رقم زودرس و متوسط‌رس ذرت دانه‌ای در تراکم‌های مختلف کاشت تحت آبیاری بارانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

2 استادیار، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 استادیار پژوهش، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

برای دستیابی به عملکرد دانه، زیست‌توده و بهره‌وری آب مناسب برای ذرت دانه‌ای، نیاز است عوامل مختلفی از جمله مقدار آب آبیاری، رقم و تراکم کشت این محصول در مناطق مختلف کشور بررسی شود. به دلیل هزینه‌بر و زمان‌بر بودن انجام آزمایش‌های مزرعه‌ای، استفاده از مدل‌های گیاهی پیشنهاد شده است. از این رو، به منظور ارزیابی مدل گیاهی SWAP، آزمایشی دو ساله (86-1385( برای دو رقم ذرت دانه‌ای (V1 و V2 به ترتیب نشان دهنده ارقام متوسط‌رس SC500 و زودرس SC302) تحت تراکم‌های کشت مختلف (D1، D2 و D3 به ترتیب نشان دهنده 75000، 85000 و 95000 بوته در هکتار برای رقم SC500 و 80000، 90000 و 100000 بوته در هکتار برای رقم SC302) با مقادیر مختلف آبیاری (I1، I2 و I3 به ترتیب نشان دهنده مقادیر 75، 100 و 125 درصد آبیاری) در شهرستان کرج انجام شد. نتایج نشان داد، در رقم V1، مقدار آب آبیاری I3 و تراکم D3، مدل SWAP دقت بالاتری برای شبیه‌سازی عملکرد دانه ذرت داشت. در شبیه‌سازی زیست‌توده ذرت دانه‌ای، دقت مدل SWAP برای رقم V2، مقدار آب آبیاری I3 و تراکم D2 و در شبیه‌سازی بهره‌وری آب، دقت این مدل برای هر دو رقم، مقدار آب آبیاری I3 و تراکم D3 مناسب‌تر از سایر تیمارها بود. به‌طور کلی، براساس آماره میانگین مربعات خطای نرمال شده، دقت این مدل برای شبیه‌سازی عملکرد، زیست‌توده و بهره‌وری آب ذرت دانه‌ای به ترتیب برابر با 14/0، 13/0 و 16/0 بود. کارایی این مدل نیز برای هر سه پارامتر ذکر شده در دسته عالی قرار داشت و مقدار آن برابر با98/0 بود. بنابراین استفاده از این مدل برای شبیه‌سازی عملکرد، زیست‌توده و بهره‌وری آب ذرت دانه‌ای تحت تیمارهای مذکور پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of SWAP Model for Simulation of Early and Mid Corn in Different Plant Densities under Sprinkler Irrigation

نویسندگان [English]

  • Shokooh Karimi 1
  • Aslan Egdernezhad 2
  • Mohammad Mehdi Nakhjavanimoghaddam 3
1 M.Sc. Student of Irrigation and drainage, Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
2 Assistant professor, Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
3 Assistant professor of Irrigation and Drainage Engineering, Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

Corn is one of the most important agricultural crops in Iran. In order to achieve appropriate yield, biomass and water use efficiency, it is necessary to evaluate the effect of irrigation amounts, cultivar types and plant densities on corn yield. Because of time-consuming and high cost in field studies, crop models have been proposed to study mentioned scenarios. In order to evaluate SWAP, a field study was conducted on two maize cultivars (V1 and V2 representing median cultivar SC500 and early cultivar Sc302, respectively) under different plant densities (D1, D2 and D3 representing 75000, 85000 and 95000 plants.ha-1, respectively, for SC500 and 80000, 90000 and 100,000 plants.ha-1 for SC302 cultivar) with different irrigation volumes (I1, I2 and I3 indicate as 75, 100 and 125% irrigation demand, respectively) in Karaj during two years (2006-2007). Results showed that SWAP had the best accuracy to simulate corn yield in V1, I3 and D3 in comparison to other treatments. SWAP accuracy was better in V2, I3 and D2 treatments for simulation of corn biomass. The model precision for water productivity was better in both cultivars, I3 and D3. In general, based on normalized root mean square error, the model accuracy for simulation of corn yield, biomass and water productivity were 0.14, 0.13 and 0.16, respectivly. SWAP efficiencies for mentioned parameters, with values equal to 0.98, were acceptable. So, it is proposed to use SWAP for simulation of yield, biomass and water use efficiency under above mentioned treatments.

کلیدواژه‌ها [English]

  • Copping Model
  • Irrigation Amount
  • Plant Densities
  • Water productivity
ابراهیمی‌پاک، ن. ع.، احمدی، م.، اگدرنژاد، ا. و خاشعی‌سیوکی، ع. 1397. ارزیابی مدل AquaCrop در شبیه‌سازی عملکرد زعفران تحت سناریوهای مختلف کم‌آبیاری و مصرف زئولیت. حفاظت منابع آب و خاک. 8(1): 132-117.
اگدرنژاد، ا.، ابراهیمی‌پاک، ن. ع.، تافته، آ. و احمدی، م. 1397. برنامه‌ریزی آبیاری کلزا با استفاده از مدل AquaCrop در دشت قزوین. مدیریت آب در کشاورزی. 5(2): 64-53.
امیری، ا.، شیرشاهی، ف. 1396. ارزیابی عملکرد ذرت دانه‌ای به مدیریت کم‌آبیاری با استفاده از مدل SWAP. اکوفیزیولوژی گیاهان زراعی. 11(4): 774-759.
بادیه‌نشین، ع.، نوری، ح. و وظیفه‌دوست، م. 1393. بهبود برآورد عملکرد محصول در مدل شبیه‌سازی SWAP با استفاده از داده‌های ماهواره‌ای. تحقیقات آب و خاک ایران. 45(4): 388-379.
علیزاده ح.، نظری ب.، پارسی‌نژاد م.، رمضانی‌اعتدالی ه. و جانباز، ح. 1389. ارزیابی مدل AquaCrop در مدیریت کم‌آبیاری گندم در منطقه کرج. آبیاری و زهکشی ایران. 4: 283-273.
محمدی، م.، داوری، ک.، قهرمان، ب.، انصاری، ح. و حق‌وردی، ا. 1394. واسنجی و صحت‌سنجی مدل AquaCrop برای شبیه‌سازی عملکرد گندم بهاره تحت تنش همزمان شوری و خشکی. پژوهش آب در کشاورزی. 29(3): 295-277.
وطن‌خواه، ا. و ابراهیمیان، ح. 1395. ارزیابی مدل AquaCrop در شبیه‌سازی عملکرد ذرت علوفه‌ای در طول جویچه. تحقیقات آب و خاک ایران. 47(3): 504-495.
 
Ahmadee M, Khashei Siuki A, Sayyari MH. (2015). Comparison of Efficiency of Different Equations to Estimate the Water Requirement in Saffron (Crocus sativus L.) (Case Study: Birjand Plain, Iran). Agroecology. 8(4): 505-520.
Ahmadee, M., Khashei Siuki, A., Hashemi, S. R., (2014). The effect of magnetic water and calcific and potasic zeolite on the yield of Lepidium Sativum L, International journal of Advanced Biological and Biomedical Research, 2(6): 2051-2060.
Amiri. E. (2017). Evaluation of water schemes for maize under arid are in Iran using the SWAP model. Communications in Soil Science and Plant Analysis. 48(16): 1963-1976.
Bonefante, A., Basile, A., Acutis, M., Mascellis, R. De., Manna, P., Perego, A., Terribile, F. (2010). SWAP, CropSyst and MACRO comparison in two contrasting soils cropped with maize in northern Italy. Agricultural Water Management. 97(7): 1051-1062.
Bonefante, A., Bouma, J. (2015). The role of soil series in quantitative land evaluation when expressing effects of climate change and crop breeding on future land use. Geroderma. 250-260: 187-195.
Ebrahimipak, N., Ahmadee, M., Egdernezhad, A., Khashei Siuki, A. (2018). Evaluation of AquaCrop to simulate saffron (crocus sativus L.) yield under different water management scenarios and zeolite amount, Journal of Water and Soil Resources Conservation, 8(1): 117-132. (in Farsi).
Ebrahimipak, N., Egdernezhad, A., Tafteh, A., and Ahmadee, M. (2019). Evaluation of AquaCrop, WOFOST, and CropSyst to Simulate Rapeseed Yield. Iranian Journal of Irrigation and Drainage, 13(3-75): 715-726. (in Farsi).
Geerts S, Raes D, Garcia M, Miranda R, Cusicanqui JA. (2009). Simulating yield response to water of quinoa (Chenopodium quinoaWilld.) with FAO-AquaCrop. Agronomy. 101: 499-508.
Ghorbani, M., Broomand Nasab, S., Soltani Mohammadi, A. (2016). Effect of Water Salinity in Sprinkler Irrigation on the CWSI Index for Irrigation Scheduling of Summer Maize. Irrigation Science and Engineering, 39(3): 63-71.
Hassanli, M., Ebrahimian H., Mohammadi, E., Rahimi, A., Shokouhi, A. 2016. Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models. Agricultural Water Management. 176: 91-99.
Jonubi, R., Rezaverdinejad, V., Salemi, H. (2017). Enhancing field scale water productivity for several rice cultivars under limited water supply. Paddy and Water Environment. 16(1): 125-141.
Ma, Y., Feng, Sh., Huo, Z., Song, X. (2011). Application of the SWAP model to simulate the field water cycle under deficit irrigation in Beijing, China. Mathematical and Computer Modeling. 54(3-4): 1044-1052.
Nakhjavani Moghaddam, M. M., Farhadi, E., Sadreghaen, S. H.,  Najafi, E. (2013). Effects of Water and Plant Density on Grain Yield and Morphological Characteristics of New Maize Hybrid (CN. KSC.500) in Karaj Region. Iranian Journal of Field Crops Research. 11(1): 13-22. (in Farsi).
Nakhjavanimoghadam, M. M., Dehghanisanij, H., Akbari, M., Sadreghaen, (2011). The Effects of Deficit Irrigation on Water Use Efficiency of New Early Maize Variety (CN. KSC.302) Using Sprinkler System. Water and Soil. 24(6): 1236-1245. (in Farsi).
Shafiei, M., Ghahraman, B., Saghafian, B., Davari, K., Vazieh Doost, M. (2018). Global Sensivity Analysis of WOFOST model parameters for maize and wheat yield simulation, Iranian Journal of Soil and Water Research. 49(4): 831-839. (in Farsi)
Shahidi, A., and Ahmadee, M. 2014. A manual for learning SWAP. Kelk Zarrin Publication. Tehran. 168 pp. http://kzp.ir. (in Farsi).
Shahidi, A., and Ahmadee, M. 2015. Crops production functions in arid region. University of Birjand Publication. Birjand. 116 pp. (in Farsi).
Van Dam, J.C., Huygen, J., Wesseling, J.G., Feddes, R.A., Kabat, P., van Walsum, P.E.V., Groenendijk, P. van Diepen, C. A. (1997). Theory of SWAP Version 2.0, Report #71. Department of Water Resources, Wageningen Agricultural University, 167 pp.
Yaghoobzadeh, M., Ahmadee, M., Seyyed Kaboli, H., Zamani, Gh. R., Amirabadizadeh, M., 2017, The evaluation of effect of climate change agricultural drought using ETDI and SPI indexes, Journal of Water and Soil Conservation, 24(4): 43-61. (in Farsi).
Yung, K., Anan, M., Hamada, K. (2016). Evaluation of drainage ability of a shallow subsurface drain in a rotational rice paddy field. CIGR-AgEng Conference, 26-29 June 2016, Aarhus, Denmark. Pp. 1-9.
Zeyliger, A. M., Ermolaeva, O. S., Muzylev, E. L., Startseva, Z. P., Sukharev, Yu. I. 2019. Computer analysis of water stress regimes of an irrigated agrocoenosis using the SWAP model and ground and monitoring data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 16(3): 33-43.
Zhao, Y., Mao, X., Shukla, M. K. 2020. Heat dynamics and seed-maize growth under film mulching. Agricultural and Forest Meteorology. 108127: 292-293.