Estimation of Runoff Using SIMTOP and BATS Schemes and Actual Evapotranspiration Using a Dynamic Vegetation Scheme in Noah-MP Land Surface Model in Neishaboor Watershed

Document Type : Original Article

Authors

1 PhD student of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Professor of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

3 Associate Professor of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract

Surface water resource planning requires estimatiof of water balance components at different spatial and temporal scales. Moreover, due to the inadequacy of the stations in terms of number, dispersion and temporal data recording, numerical modeling of land surface is necessary. In this study, the Noah-MP model was used to compare the simulated runoff by SIMTOP and BATS schemes and to evaluate the dynamic vegetation scheme for estimating actual evapotranspiration in Neishaboor watershed at monthly scale in 2000-2009. Due to low accuracy and dispersion of hydrometric stations, the SWAT model output was used for evaluation. In order to develop the model, first, the sensitivity analysis of the modeled runoff to parameters of model was performed. The model showed the highest and least sensitivity respectively to the soil parameter in the Clapp-Hornberger relation (b) and runoff decay factor (f), respectively. the best and first performance of simulated runoff by BATS scheme were in mountainous areas and the evaluation criteria including R2, NSE and RMSE were respectively 0.81, 0.64 and 1.91. The second grade of performance was for the plain and The lowest values for simulated runoff were in foothills regions. Results indicate that BATS scheme shows better results in the plain and foothills areas and the results of SIMTOP scheme in the mountainous regions were similar to BATS results.
The dynamic vegetation scheme has been able to simulate evapotranspiration changes along with the stages of plant growth. the mean of annual evapotranspiration estimated by Noah-MP model was 305 mm.

Keywords


ایزدی، ع. 1392. کاربرد و ارزیابی یک مدل توسعه‌یافته تلفیقی آب زیرزمینی آب سطحی در حوضه آبریز نیشابور. رساله دکتری آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
مهندسین مشاور سازآب شرق، 1388. مطالعات مدیریت بهم پیوسته منابع آب منطقه نیشابور، جلد شانزدهم گزارش تلفیق مطالعات طرح جامع مدیریت منابع آب، شرکت آب منطقه‌ای خراسان رضوی، شرکت مدیریت منابع آب ایران، وزارت نیرو.
میان‌آبادی، آ. 1395. پیش‌بینی تغییرات تبخیر سالانه در حوضه‌های آبریز مناطق خشک با استفاده از نمایه خشکی (مطالعه موردی حوضه آبریز نیشابور). رساله دوره دکتری هواشناسی کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
میرشفیعی، س.، انصاری، ح.، داوری، ک. و ضیایی، ع.ن. 1397. بررسی داده‌های واداشت هواشناسی GLDAS-1 و تصحیح انحراف داده‌های بارش برای کاربست در مدل‌های سطح خشکی (مطالعه موردی: حوضه نیشابور). نشریه آبیاری و زهکشی ایران. 12(6): 1336-1327.
نظریه، ف. 1396. توسعه و ارزیابی مدل یکپارچه شبیه‌سازی جریان سطحی، ناحیه غیر‌اشباع و اشباع در دشت نیشابور. رساله دوره دکتری آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
Ball, J. T., Woodrow, I.E. and Berry, J.A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research. 1: 221-234.
Barlage, M., Tewari, M., Chen, F., Miguez‐Macho, G., Yang, Z.‐L. and Niu, G.‐Y. 2015. The effect of groundwater interaction in North American regional climate simulations with WRF/Noah‐MP. Climatic Change. 129(3–4): 485–498.
Cai, X., Yang, Z.-L., David, C. H., Niu, G.-Y. and Rodell, M. 2014. Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin, Journal of Geophysical Research: Atmospheres. 119: 23–38.
Collatz G.J., Ball J.T., Grivet C. and Berry J.A. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology. 54: 107–136.
Chen, L., Li, Y., Chen, F., Barr, A., Barlage, M. and Wan, B. 2016.The incorporation of an organic soil layer in the Noah-MP land surface model and its evaluation over a boreal aspen forest, Atmospheric Chemistry and Physics. 16: 8375-8387.
Deardorff, J. W. 1978. Efficient prediction of ground surface temperatureand moisture, with inclusion of a layer of vegetation, Journal of Geophysical Research. 83: 1889–1903.
Dickinson, R.E., Henderson-Sellers A. and Kennedy P.J. 1993. Biosphere Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note. National Center for Atmospheric Research.
Fan, Y., Miguez‐Macho, G., Weaver C. P., Walko R. and Robock A. 2007. Incorporating water table dynamics in climate modeling: 1. Water table observation and equilibrium water table simulations. Journal of Geophysical Research. 112, D10125: 1-17.
Farquhar, G.D., Caemmerer von S. and Berry J.A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 149: 78–90.
Jiang, X., Niu G.‐Y. and Yang Z.‐L. 2009. Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States, Journal of Geophysical Research. 114, D06109: 1-15.
Leung, L. R., Huang, M. Y., Qian, Y. and Liang, X. 2011. Climate-soil-vegetation control on groundwater table dynamics and its feedbacks in a climate model. Climate Dynamics. 36: 57-81
Leuning, R. 1990. Modelling stomatal behavior and photosynthesis of Eucalyptus grandis. Australian Journal of Plant Physiology 17:159–175.
Ma, N., Niu, G.‐Y., Xia, Y., Cai, X., Zhang, Y., Ma, Y. and Fang, Y. 2017. A systematic evaluation of Noah‐MP in simulating landatmosphere energy, water and carbon exchanges over the continental United States. Journal of Geophysical Research: Atmospheres, 122:12,245–12,268.
Manabe, S. 1969. Climate and the ocean circulation I. The atmospheric circulation and the hydrology of the Earth’s surface, Monthly Weather Review. 97:739-774.
Niu, G.-Y., et al. 2011, The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, Journal of Geophysical Research. 116:D12109:1-19.
Rosero, E., Yang Z.-L., Gulden, L. E., Niu G.-Y. and Gochis D. J. 2009. Evaluating enhanced hydrological representations in Noah LSM over transition zones: Implications for model development, Journal of Hydrometeorology. 10 (3):600-622.
Rosero, E., Yang Z.-L., Wagener T., Gulden L. E., Yatheendradas S. and Niu G.-Y. 2010. Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season, Journal of Geophysical Research. 115.
Wolock, D. M. and McCabe G. J. 2000. Differences in topographic characteristics computed from 100‐ and 1000‐m resolution digital elevation model data, Hydrology. Processes, 14:987–1002.
Yang, Z.‐L. 2004. Modeling land surface processes in short‐term weather and climate studies, in Observation, Theory and Modeling of Atmospheric Variability.World Scientific Series on Asia‐Pacific Weather Climate. 3:288–313
Zheng, D., van der Velde, R., Su, Z., Wen, J., Booij, M. J., Hoekstra, A. Y. and Wang, X. 2015. Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP, Water Resource Research. 51:5735–5755