مقایسه کارایی دو مدل دیست و آکواکراپ در شبیه سازی عملکرد گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، عضو هیئت علمی، بخش آبیاری و فیزیک خاک، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

بررسی عوامل محدود کننده عملکرد گیاهان نیاز به انجام تحقیقات متعدد و هزینه‌بر دارد، لذا استفاده از مدل ها می‌تواند شایان توجه باشد. از جمله مدل های کاربردی می توان به مدلهای آکواکراپ و دیست که به منظور شبیه‌سازی عملکرد گیاهان بکار می‌روند؛ اشاره نمود. در سال اول این مدل‌ها برای مزارع گندمکاری خوزستان در پایلوت رامسه واسنجی و در سال دوم برای دو پایلوت رامسه و حمیدیه مورد اعتبارسنجی واقع گردیدند. ریشه میانگین مربعات خطا، ریشه میانگین مربعات خطای نرمال، شاخص توافق و کارایی با مدل دیست برای عملکرد دانه بترتیب 036/0 ، 01/0، 92/0 و 76/0 بود که مقایسه این مقادیر با شاخصهای آماری مدل آکواکراپ بیانگر خطای کمتر و شاخص کارایی بیشتر برای مدل دیست می باشد. ریشه میانگین مربعات خطا ، ریشه میانگین مربعات خطای نرمال بیوماس گندم در مدل دیست بترتیب23/0 و 04/0 تعیین شد. نتایج اعتبارسنجی نشان داد که شاخص کارایی مدل دیست برای عملکرد دانه و بیوماس گندم به ترتیب 76/0 و 57/0 بود که از مقادیر متناظر آن با مدل آکواکراپ(56/0 و 36/0) بمراتب بیشتر و حاکی از کارایی بالای مدل دیست در شبیه سازی عملکرد دانه و بیوماس گندم می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of DSSAT and AQUACROP model efficiency for wheat yield simulation

نویسندگان [English]

  • Mohammad Reza Emdad
  • Arash Tafteh
Assistant professor of Department of irrigation and soil physics, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

The investigation of plant production limiting factors requires extensive and costly research, so the use of models can be noteworthy. Practical models including Aquacrop and DSSAT are used to simulate plant production. In the first year, these models were calibrated for Khuzestan wheat farms in Ramseh pilot and in the second year for two pilots, Ramseh and Hamidiyeh.The normalized root mean square error, agreement index and model efficiency with DSSAT model for grain yield values in the first year were 0.036, 0.01, 0.92 and 0.76, respectively that Comparison of these values with statistical indices obtained from Aquacrop model indicates less error and more performance index for using DSSAT model. Also, the performance of the model, which is an indicator of the effectiveness in the selection of models, shows that the DSSAT is more efficient than the Aquacrop model. Mean root mean square error and normalized root mean square error of wheat biomass in the DSSAT model were determined to be 0.23 and 0.04 respectively that indicates the DSSAT model has higher efficiency and accuracy than the Aquacrop model in simulating grain yield and wheat biomass.

کلیدواژه‌ها [English]

  • evapotranspiration
  • Grain Wheat production. Irrigation Management
  • Khuzestan
  • Validation
توفیق، ص.، رحیمی، د. و یزدان پناه، ح. 1399. شبیه‌سازی عملکرد، تبخیرتعرق، نیاز آبی و کارایی مصرف آب گندم با استفاده از مدل CERES-WHEAT-DSSAT  در دشت شهرکرد. آب‌وخاک. 34 (3): 592-579.. Doi: 10.22067/jsw.v34i3.84847
قاسمی، م.، ناصری، ع. و معاضد، ه. 1398. پارامتر یابی و ارزیابی مدل دی ست برای نیشکر رقم CP57-614 در شرایط اقلیمی خوزستان. تحقیقات آب و خاک ایرا. 50 (6): 1340-1331. Doi : 10.22059/ijswr.2018.259986.667944
Ahmed, M., Akram, M., Asim, M., Gill, M., Hassan, F., Higgins, S., Stockle, C. and Hoogenboom, Gerrit. 2016. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture. 123. 384-401. 10.1016/j.compag.2016.03.015.
Amiri, E., Rezaei, M., Bannayan, M. and Soufizadeh, S. 2013. Calibration and Evaluation of CERES Rice Model under Different Nitrogen- and Water-Management Options in Semi-Mediterranean Climate Condition. Communications in Soil Science and Plant Analysis. 44. 10.1080/00103624.2013.769565.
Bao, Y., Hoogenboom, G., McClendon, R. and Vellidis, G. 2017. A comparison of the performance of the CSM-CERES-Maize and EPIC models using maize variety trial data. Agricultural Systems. 150. 10.1016/j.agsy.2016.10.006.
Cammarano, D., Jose, P., Basso, B., Paul, W. and Grace, Peter. 2012. Agronomic and economic evaluation of irrigation strategies on cotton lint yield in Australia. Crop and Pasture Science. 63. 647-655. 10.1071/CP12024.
Geerts S., Raes D., Garcia M., Miranda R., Cusicanqui J.A., Taboada C., Mendoza J., Huanca R., Mamani A., Condori O., Mamani J., Morales B., Osco V., and Steduto P. 2009. Simulating yield response of Quinoa to water availability with Aquacrop. Agronomy journal. 101: 499–508.
Hammad, H., Abbas, F., Ahmad, A., Farhad, W., Anothai, J. and Hoogenboom, G. 2017. Predicting water and nitrogen requirements for maize under semi-arid conditions using the CSM-CERES-Maize model. European Journal of Agronomy. 10.1016/j.eja.2017.10.008.
Heydarinia, M., BoroomandNasab, S., Naseri, A. and Albaji, M. 2017. Aquacrop model evaluation to estimate of Maize yield and soil salinity under different agriculture managements and irrigation with saline water. Iranian. J. Soil and Water. Research.48(1): 49-61. (In Persian with English abstract)
Holzworth, Dean ., Snow, Val ., Janssen, Sander ., Athanasiadis, Ioannis ., Donatelli, Marcello ., Hoogenboom, Gerrit ., White, Jeffrey ., Thorburn, Peter. 2015. Agricultural production systems modelling and software: Current status and future prospects. Environmental Modelling Software. 72. 10.1016/j.envsoft.2014.12.013.
Liu, H.L., Yang, J.Y. and Drury, C.F. 2011a. Using the DSSAT -CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutr Cycl Agroecosyst89, 313–328 (2011). https://doi.org/10.1007/s10705-010-9396-y.
Liu, H., Yang, J., Tan, C., Drury, C., Reynolds, W.D., Zhang, T.Q., Bai, Y., Jin, J., He, P. and Hoogenboom, G. 2011b. Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model. Agricultural Water Management. 98. 1105-1111. 10.1016/j.agwat.2011.01.017.
McNider, R.T., Handyside, C., Doty, K., Ellenburg, W., Cruise, J.F., Christy, J.R., Moss, D., Sharda, V. and Hoogenboom, G. 2014. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands. Environmental Modelling. Software. 119. 10.1016/j.envsoft.2014.10.009.
Ortiz, B.V., Hoogenboom, G., Vellidis, G., Boote, K., Davis, R. and Perry, C. 2014. Adapting the CROPGRO-Cotton Model to Simulate Cotton Biomass and Yield under Southern Root-Knot Nematode Parasitism. Transactions of the ASABE (American Society of Agricultural and Biological Engineers). 10.13031/2013.29201.
Pasquale, S., Hsiao, C. and Fereres, E. Raes. 2012. Crop yield response to water. FAO Irrigation and drainage paper 66.505 p.
Pedreira, B., Pedreira, C., Boote, K., Lara, M. and Alderman, P. 2011. Adapting the CROPGRO perennial forage model to predict growth of Brachiaria brizantha. Field Crops Research. 120. 370-379. 10.1016/j.fcr.2010.11.010.
Shelia, V., Hansen, J., Sharda, V., Porter, C., Aggarwal, P.K., Wilkerson, C. and Hoogenboom, G. 2019. A Multi-scale and Multi-model Gridded Framework for Forecasting Crop Production, Risk Analysis, and Climate Change Impact Studies. Environmental Modelling Software. 115. 10.1016/j.envsoft.2019.02.006.
Singh, Sukhbir ., Boote, Kenneth ., Angadi, Sangu ., Grover, Kulbhushan ., Begna, Sultan ., Auld, Dick. 2015. Adapting the CROPGRO Model to Simulate Growth and Yield of Spring Safflower in Semiarid Conditions. Agronomy Journal. 108. 10.2134/agronj15.0272.
Todorvic, M., Albrizio R., Zivotic L., Abi Saab M., Stocle C. and Steduto P. 2009. Assesment of Aquacrop, Cropsyst, and Wofost models in the simulation of sunflower Growth under different water regimes. Agronomy journal.101:509-521.
Yang, J., Yang, Jeng-Y., Liu, S. and Hoogenboom, G. 2014a. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems. 127. 10.1016/j.agsy.2014.01.008.
Yang, Jeng-Y., Drury, C., Yang, J., Li, Zhuo-T. and Hoogenboom, G. 2014b. EasyGrapher: Software for Data Visualization and Statistical Evaluation of DSSAT Cropping System Model and the CANB Model. International Journal of Computer Theory and Engineering. 6. 210-214. 10.7763/IJCTE.2014.V6.864.
Zheng, Z., Cai, H., Lianyu, Y. and Hoogenboom, G. 2017.Application of the CSM–CERES–Wheat Model for Yield Prediction and Planting Date Evaluation at Guanzhong Plain in Northwest China. Agronomy Journal. 109. 10.2134/agronj2016.05.0289.
Ziaii, G., Babazadeh, H., Abbasi, F. and Kaveh, F. 2014. Evaluation of the Aquacrop and CERES-Maize models in assessment of soil water balance and maize yield. Iranian Journal of Soil and Water Research.45 (4):435-445.