Effect of Irrigation Regimes and Silica Nanoparticles on Yield and Yield Components in Vivian Lettuce

Document Type : Original Article

Authors

1 Department of Irrigation and Drainage, Faculty of Water Engineering, Shahid Chamran University of Ahvaz, Ahwaz, Iran

2 Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.

3 Department of Agriculture and Horticulture, Faculty of Agriculture, Shahid Chamran University of Ahvaz

Abstract

Nano in agriculture improves plants in absorption of food, fuel and other items. The aim of this study was to investigate the performance and efficiency of water consumption under low irrigation regimes and silica nanoparticles. The present study was conducted in 1398 in the greenhouse of the Faculty of Agriculture, Shahid Chamran University of Ahvaz. In order to achieve the above objectives, the present study on lettuce plant (Vivian baby lettuce cultivar) in three water levels (75, 85 and 100 water requirements of the plant) and three application levels of nanoparticles including 0, 50 and 100 ml per 100 g Liter is done as root feeding in three repetitions. This design was completed in the form of shredded strip cards with a basic block design. Based on the results, dehydration stress on the total yield, harvest index, leaf area and leaf area has a significant effect on the level is likely to exist if it is valid for one year and shows only on weight. In this study, the effect of using nanoparticles on any of the studied indicators was not found to be significant. The combined effect of dehydration stress and the use of nanoparticles on total yield was significant at five times the probability level, but this effect was not found to be significant on root weight, leaf area index, harvest, root length and leaf area. Records more than the lowest total performance parameter for the I100F100 team equal to 87.88 grams and the lowest amount in the I85F50 team with 47 grams. The lowest leaf area and leaf area index are observed in I100F50 team, the minimum leaf area in I75F0 treatment and the minimum leaf area level in I75F100 treatment. The highest and lowest harvest indices in this research are 74.68 and 52.61 of the budget results, respectively. Maximum and minimum root weight occurred at full irrigation. Root weight in I100F100 treatment is 27 grams and in I100F0 treatment is 18.42 grams.

Keywords


بهبودی، ف.، دادی، ا.ا. و محمدی­گل تپه، ا. ۱۳۹۲. اثر ورمی کمپوست حاوی نانو ذرات اکسید مس و اکسید روی بر برخی ویژگی‌های زراعی لوبیاچیتی. مجله تولید گیاهان زراعی. 6 (3): 49-33.
ذرتی پور، ا.، سلطانی محمدی ا. و عالم‌زاده ‌انصاری، ن. 1396. ارزیابی توابع کاهش جذب آب کاهو برگی (Red Salad Bowl)  تحت تنش خشکی در شرایط گلخانه‌ای. آب و خاک. 33 (2): 331-317.
گلستانی کرمانی، س.، نوری امام‌زاده‌ای، م.ر.، شایانی نسب، محمد.، شاه نظری، ع. و محمد­خانی، ع. 1393. بررسی اثرات تنش خشکی حاصل از کم­آبیاری سنتی و متناوب روی برخی از خصوصیات کمی و کیفی سیب‌زمینی رقم آگریا. علوم مهندسی آبیاری. 37 (3): 135-123.
طاهری، ه.، سلطانی­محمدی، ا. و عالم زاده­ انصاری، ن. 1396. ارزیابی کاربرد پلیمر سوپرجاذب بر عملکرد و کارایی مصرف آب کاهو. پایان‌نامه کارشناسی ارشد. دانشگاه شهید چمران اهواز.
محتشمی، ف.، تدین، م.ر. و روشندل، پ. 1397. ارزیابی تأثیر سطوح کم آبیاری بر عملکرد و اجزای عملکرد ژنو تیپ‌های گلرنگ. به زراعی کشاورزی. 20 (2): 561-547.
هوشمندزاده، ع.، هوشمند، ع.، برومندنسب، س.، عالم زاده انصاری، ن. و سیاهپوش، م. 1392. تأثیر دور آبیاری و کم آبیاری در تعیین کارایی مصرف آب مناسب و کلروفیل برگ کاهو (Lactuca sativa) با استفاده از سیستم آبیاری قطره‌ای در شرایط اقلیمی اهواز. دومین همایش ملی توسعه پایدار کشاورزی و محیط‌زیست.
Acar, B., Paksoy, M., Türkmen, Ö. and Seymen, M. 200). Irrigation And Nitrogen Level Affect Lettuce Yield In Greenhouse Condition. African Journal of Biotechnology. 24(7).
Amin, M., Ahmad, R., Ali, A., Hussain, I., Mahmood, R., Aslam, M. and Lee, D, J. 2018. Influence of Silicon Fertilization on Maize Performance under Limited Water Supply. Silicon. 10(2): 177-189.
Ashkavand, P., Zarafshar, M., Tabari, M., Mirzaie, J., Nikpour, A.R., Bordbar, K., Struve, D. and Striker, G.G. 2018. Application of Sio2 Nanoparticles as Pretreatment Alleviates the Impact of Drought on the Physiological Performance of Prunus Mahaleb L. (Rosa Ceae). Bol. Soc. Argent. Bot. 53(2): 13-1.
Ahmad, M., El-Saeid, M.H., Akram, M.A., Ahmad, H.R., Haroon, H. and Hussain, A. 2016. Silicon Fertilization—A Tool to Boost Up Drought Tolerance in Wheat (Triticum Aestivum L.) Crop for Better Yield. J. Plant Nutr. 39(9): 1291-1283.
Ballester, C., Castel, J., Intrigliolo, D.S. and Castel, J.R. 2013. Response of Navel Lane Late Citrus Trees to Regulated Deficit Irrigation: Yield Components and Fruit Composition. Irrigation Science. 31(3): 341-333.
Bezerra,A.C.M., Valença,D.D.C., Carvalho,D.F.D., Pinho,C.F.D., Reinert,F., Gomes,D.P., Gabetto,F.P., Azevedo,R.A., Masseroni, D. and Medici,L.O. 2019. Automation Of Lettuce Seedlings Irrigation With Sensors Deployed In The Substrate Or At The Atmosphere. Scientia Agricola. 72(2): 189-179.
Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M. and Shiranibidabadi, S. 2018. Effect of Silicon on Growth and Development of Strawberry under Water Deficit Conditions. Horticultural Plant Journal. 4(6): 232-226.
Davarpanah, S., Tehranifara, A., Davarynejad, G.H., Abadí, J. and Khorasani, R. 2016. Effects of Foliar Applications of Zinc and Boron Nano-Fertilizers On Pomegranate (Punica Granatum Cv. Ardestani) Fruit Yield And Quality. Scientia Horticulturae. 210 (2016): 64-57.
Donald, C.M. and Hamblin, J. 1976. The Biological Yield and Harvest Index of Cereals as Agronomic and Plant Breeding Criteria. Advances in Agronomy Journal. 28: 405-361.
Isfahani, F.M., Tahmourespour, A., Hoodaji, M., Ataabadi, M. and Mohammadi, A. 2019. Influence of Exopolysaccharide-Producing Bacteria and Sio 2 Nanoparticles on Proline Content and Antioxidant Enzyme Activities of Tomato Seedlings (Solanum Lycopersicum L.) Under Salinity Stress. Polish Journal of Environmental Studies. 28(1).
Javadimoghadam, A., Ladan Moghadam, A. and Danaee, E. 2015. Response of Growth and Yield of Cucumber Plants (Cucumis Sativus L.) To Different Foliar Applications of Nano- Iron and Zinc. International Research Journal of Applied and Basic Sciences. 9(9): 1478-1477.
Kibbey, T.C. and Strevett, K.A. 2019. The Effect of Nanoparticles on Soil and Rhizosphere Bacteria and Plant Growth in Lettuce Seedlings. Chemosphere. 221. 707-703.
Larue, C., Castillo-Michel, H., Sobanska, S., Trcera, N., Sorieul, S., Cécillon, L., Ouerdane,L., Legros, S. and Sarret,G. 2014. Fate of Pristine Tio2 Nanoparticles and Aged Paint-Containing Tio2 Nanoparticles in Lettuce Crop after Foliar Exposure. Journal of Hazardous Materials. 273. 26-17.
Liu, R. and Lal, R. 2015. Potentials of Engineered Nanoparticles as Fertilizers for Increasing Agronomic Productions. Science of the Total Environment. 514.139-131.
Mahmoud, M.A., Shala, A.Y. and Rashed, N.M. 2017. The Mutual Effect of Irrigation and Foliar Spray of Silics Nanoparticles on Basil Plant.Journal Plant Production, Mansoura Univ. 8(12): 1313-1303.
Nagaz, K., Mokh, F.E., Masmoudi, M.M. and Mechlia, N.B. 2013. Soil Salinity, Yield and Water Productivity of Lettuce under Irrigation Regimes with Saline Water in Arid Conditions of Tunisia. International Journal of Agronomy and Plant Production. 4(5): 900-892.
Pelesco, V.A. and Alagao, F.B. 2014. Evapotranspiration Rate of Lettuce (Lactuca Sativa L., Asteraceae) In a Non-Circulating Hydroponics System. Journal of Society & Technology. 4(1): 6-1.
Rui, Y., Gui, X., Li, X., Liu, S. and Han, Y. 2014. Uptake, Transport, Distribution and Bio-Effects of Sio 2 Nanoparticles in Bt-Transgenic Cotton. Journal of Nanobiotechnology. 12(1): 50.
Rizwan, M., Ali, Sh., Ali, B., Adrees, A., Arshad, M., Hussain, A., Rehman, M.Z.U. and Abdul-Waris, A. 2019. Zinc And Iron Oxide Nanoparticles Improved The Plant Growth And Reduced The Oxidative Stress And Cadmium Concentration In Wheat. Chemosphere. 214: 277-269.
Shams, M., Ekinci, M., Turan, M., Dursun, A., Kul, R. and Yildirim, E. 2019. Growth, Nutrient Uptake and Enzyme Activity Response of Lettuce (Lactucasativa L.) To Excess Copper. Environmental Sustainability. 2(1): 73-67.
Sharifi, R.J., Sharifirad, M. and Teixeira, D.S.J. 2016. Morphological, Physiological and Biochemical Responses of Crops (Zea Mays L., Phaseolus Vulgaris L.), Medicinal Plants (Hyssopus Officinalis L., Nigella Sativa L.), and Weeds (Amaranthus Retroflexus L., Taraxacum Officinale Fh Wigg) Exposed To Sio2 Nanoparticles.
Xu, J., Luo, X., Wang, Y. and Feng, Y. 2018. Evaluation of Zinc Oxide Nanoparticles on Lettuce (Lactuca Sativa L.) Growth and soil bacterial community. Environmental Science and Pollution Research. 25(6): 6035-6026.
Yassen, A., Abdallah, E., Gaballah, M. and Zaghloul, S. 2017. Role of Silicon Dioxide Nano Fertilizer in Mitigating Salt Stress on Growth, Yield and Chemical Composition of Cucumber (Cucumis Sativus L.). International Journal of Agricultural Research. 12(3): 135-130.