Experimental Study of Energy Dissipation over Stepped Spillway with Appendance Elements on the Steps

Document Type : Original Article

Authors

1 Ph.D. Candidate of Water and Hydraulic Structures, Faculty of Engineering, University of Zanjan, Zanjan, Iran

2 Assistant Professor, Faculty of Engineering, University of Zanjan, Zanjan, Iran

Abstract

Steps in the stepped spillway by creating an artificial roughening bed, dissipate the flow of energy more than other types of spillways. An increase of roughness leads to a uniform and continuous distribution energy of the flow over the spillway. The present study deals with experimental study regarding the appendance elements on the steps and its impact on the variation of the flow pattern, inception point, energy dissipation and Darcy roughness coefficient. Experiments were performed on a physical model, with appendance elements on the steps in different configurations and type (height and notch), and the results were compared with flat stepped spillway. The results showed that the appendance elements on the steps causes some the instabilities and turbulence on the center axis and sides of the steps, which causes the inception point to be moved upstream of the stepped spillway. A nappe and transition flow regimes on stepped spillways with appendance elements occur at lower discharges than flat stepped spillway. With notched, the change of the flow regime on the stepped spillway occurs later than in the height state. Also, the appendance elements on the steps have no effect on the energy dissipation and Darcy roughness coefficient. However, with notched on the appendance elements, their performance is improves and the amount of energy dissipation and Darcy roughness coefficient increases 7.33% and 8% compared to flat stepped spillway, respectively

Keywords


اخگر، س. و روشنگر، ک. 1399. مطالعه عددی و آزمایشگاهی تأثیر ایجاد حفره روی پله‌های سرریز پلکانی بر پارامترهای هیدرولیکی و استهلاک انرژی در جریان رویه‌ای،  نشریه مهندسی عمران امیرکبیر، 52 (8): 1-12.
ترکمن سرابی، م.، رجائی، س.ح.، گلکار، ح. و یی­یزد، ح. 1399. بررسی اثر اندازه دانه‌بندی مصالح سنگی بر میزان تلفات انرژی در سرریزهای پلکانی گابیونی، نشریه آبیاری و زهکشی ایران. 14 (4): 1175-1186.
جم، م.، طالب بیدختی، ن. و مردشتی، ا. 1393. ارزیابی استهلاک انرژی روی سرریز دندانه‌دار بلوکی و مقایسه آن با سرریز پلکانی، نشریه هیدرولیک. 9 (2): 1-10.
حیدری ارجلو، س.، موسوی جهرمی، س.ح. و ادیب، آ. 1389. بررسی تأثیر شیب بر تعداد بهینه پلکان‌ها در سرریزهای پلکانی، علوم و مهندسی آبیاری. 33 (2): 124-140.
سلماسی، ف.، بینا، م. و موسوی جهرمی، س.ح. 1382. ارزیابی افت کارمایه جریان از روی سرریزهای پلکانی با استفاده از شبیه فیزیکی، مجله کشاورزی. 26: 57-71.
سرکمریان، سعید.، احدیان، ج. 1399. مدل‌سازی ریاضی افت انرژی در سرریزهای پلکانی با استفاده از مدل عددی­ANSYS-CFX، علوم و مهندسی آبیاری. 43 (1): 43-56. 
قادری، ا. و عباسی، س. 1398. بررسی عددی عملکرد سرریزهای پلکانی-کنگره­ای بر روی استهلاک انرژی جریان­های غیر ریزشی، نشریه هیدرولیک. 14 (3): 1-16.
روشنگر، ک. و اخگر، س. 1398. مطالعه عددی و آزمایشگاهی تأثیر المان‌های گوه‌ای شکل بر ضریب زبری و استهلاک انرژی روی سرریز پلکانی، نشریه آبیاری و زهکشی ایران. 13 (1): 78-88.
Carosi. G. and Chanson. H. 2008. Turbulence characteristics in skimming flows on stepped spillways, Canadian Journal of Civil Engineering. 35 (9): 865–880.
Chanson. H. 1995. Hydraulic Design of Stepped Cascades, Channels, Weirs and Spillways. Pergamon, Oxford, UK, Jan., 292 pages.
Chanson. H. 2001. The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse, The Netherlands, 384 pages.
Chanson. H. 1994. Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research, 32(3): 445-460.
Chen. Q. Dai. G. and Liu. H. 2002. Volume  of  fluid  model  for  turbulent  numerical  simulation  of  stepped  spillway overflow. Journal of Hydraulic Engineering ASCE. 128 (70): 683-688.
Chow. V.T. 1959. Open Channel Hydraulics. McGraw-Hill, New York, USA.
Daneshfaraz. R. Joudi. A.R. Ghahramanzadeh. A. and Ghaderi. A. 2016. Investigation of flow pressure distribution over a stepped spillway. Advances and Applications in Fluid Mechanics. 19(4): 811–822.
Felder S. Guenther P. and Chanson. H. 2012. Air-Water Flow Properties and Energy Dissipation on Stepped Spillways: a Physical Study of Several Pooled Stepped Configurations. Hydraulic Model Report No. CH87/12, School of Civil Engineering, The University of Queensland, Brisbane, Australia.
Felder. S. and Chanson. H. 2014. Effects of step pool porosity upon flow aeration and energy dissipation on pooled stepped spillways. Journal of Hydraulic Engineering. 140 (4): 04014002
Felder. S. Geuzaine. M. Dewals. B. and Erpicum. S. 2019. Nappe flows on a stepped chute with prototype-scale steps height: Observations of flow patterns, air-water flow properties, energy dissipation and dissolved oxygen. Journal of Hydro-environment Research. 27: 1-19.
Ghaderi. A. Daneshfaraz. R. Torabi. M. Abraham. J. And Azamathulla. H.M. 2020. Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply, 1988-1998.
Ghaderi. A. Abbasi. S. Abraham. J. and Azamathulla. H.M. 2020. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation, 72: 101711.
Ghaderi, A.; Abbasi, S.; Di Francesco, S. 2021. Numerical Study on the Hydraulic Properties of Flow over Different Pooled Stepped Spillways. Water, 13, 710.
Ghaderi. A. and Abbasi. S. 2021. Experimental and Numerical Study of the Effects of Geometric Appendance Elements on Energy Dissipation over Stepped Spillway. Water, 13, 957.
Gonzalez. C. and Chanson. H. 2007. Hydraulic design of stepped spillways and downstream energy dissipators for embankment dams. Dam Engineering. 17 (4): 223–244.
Hamedi. A. Mansoori. A. Malekmohamadi. I. and Roshanaei. H. 2011. Estimating energy dissipation in stepped spillways with reverse inclined steps and end sill. World Environmental and Water Resources Congress. Bearing Knowl Sustain. ASCE.
Khatsuria R.M. 2005. Hydraulics of Spillways and Energy Dissipators. Marcel Dekker, New york.
Mero. S. and Mitchell. S. 2017. Investigation of energy dissipation and flow regime over various forms of stepped spillways. Water and Environment Journal, 31 (1): 127-137.
Mondardo. J.M. and Fabiani. A.L. 1995. Comparison of Energy Dissipation between Nappe and Skimming Flow Regimes on Stepped Chutes. Journal of Hydraulic Research. 33(1): 119-122.
Morovati. K. Eghbalzadeh. A. and Soori. S. 2016. Study of Energy Dissipation of Pooled Stepped Spillways. Civil Engineering Journal. 2 (5): 208-220.
Nikseresht. A.H. Talebbeydokhti. N. and Rezaei. M.J. 2013. Numerical simulation of two-phase flow on step-pool spillways. Scientia Iranica. 20 (2): 222-230.
Nohani. E. bahadoribirgani. B. Jalili. D. and Mirazizi. S. 2015. Study The Effect Of The Number Of  Steps  On Energy  Dissipation  Of  Stepped  Spillways  In  Non-Nappe or  Skimming  Flow. Journal of Novel Applied Sciences. 4 (9): 932-939.
Peyras. L. Royet. P. and Degoutte. G. 1992. Flow and Energy Dissipation over Stepped Gabion Weirs. Journal of hydraulic Engineering. 118 (5): 707-717.
Pfister. M. and Chanson. H. 2014. Two-phase air-water flows: Scale effects in physical modeling. Journal of Hydrodynamics, Ser. B, 26 (2): 291-298.
Rajaratnam, N. 1990. Skimming flow in stepped spillway. Journal of Hydraulic Engineering. 116 (4): 487-591.
Rice. C.E. and Kadavy. K.C. 1996. Model Study of a Roller Compacted Concrete Stepped Spillway. Journal of Hydraulic Engineering. 122 (6): 292–297.
Roshan. R. Azamathulla. H.M. Marosi. M. Sarkardeh. H. Pahlavan. H. and Ghani. A. 2010. Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs. 20 (3): 131-136.
Sorensen. R.M. 1985. Stepped spillway hydraulic model investigation. Journal of Hydraulic Engineering. 111 (12): 1461-1472.
Tabbara. M. Chatila. J. and Awwad. R. 2005. Computational simulation of flow over stepped spillways. Computers and Structures. 83: 2215–2224.
Tongkratoke. A. Chinnarasri. C. Pornprommin. A. Dechaumphai. P. and Juntasaro. V. 2009. Non-linear turbulence models for multiphase recirculating free-surface flow over stepped spillways. International Journal of Computational Fluid Dynamics. 23(5): 401–409.