Effect of Barley Cultivation on the Reducing of Soil Salinity Amount, under Different Levels of Salinity and Irrigation

Document Type : Original Article

Authors

1 Ph.D. of irrigation and drainage Engineering Dept of Water Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.

2 Associate professor, Dept of Water Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran

Abstract

The possibility of modification the saline lands by planting the salt-resistant crops, prevents the production of wastewater and drainage costs. In this study, the possibility of modifying saline soils by planting barley at different irrigation levels and soil salinity, was investigated. Salinity treatments included 6(S1), 9.5(S2) and 13(S3) (dS.m-1) and irrigation treatments included the amount of 100(I1), 75(I2) and 50(I3) percent based on the barley water requirement. This research was done as a factorial experiment in a completely randomized design with three replications. Due to increasing soil salinity (from S1 to S3) at irrigation levels of I1, I2 and I3, the amount of evapotranspiration was reduced to 25.5, 30.6 and 36 percent, respectively. The amount of reduced soil salinity in S1, S2 and S3 treatments were equal to 4.34, 6.88 and 9.42 (in I1 treatment), 3.76, 4.92 and 6.08 (in I2 treatment) and 3.64, 3.58 and 3.52 dS.m-1 (in I3 treatment), respectively. Low irrigation reduced the soil modification efficiency. Also, increasing the soil salinity in low irrigation treatments had a high effect on this work. Due to drought stress, the amount of soil modification efficiency decreased to 16% (in S1 treatment), 48% (in S2 treatment) and 62.6% (in S3 treatment). However, at full irrigation level, increasing the soil salinity (up to S3 treatment) did not had effect on the soil modification efficiency. Regression functions were used to estimate the final soil salinity, by the initial soil salinity and irrigation level. The exponential model had the best fit between the two variables of EC_f/EC_i and I_i/I_1 . The overall result showed that achieving to the highest soil modification efficiency and optimal modeling, required to the full irrigation of the crop.

Keywords


بهبهانی‌زاده رضائیان، ز.، پذیرا، ا.، پناهپور، ا.، و ظهرابی، ن. 1396. مقایسه روش‌های مختلف آبشویی نمک‌های محلول از نیمرخ خاک‌های شور و سدیمی. فصلنامه تخصصی علوم و مهندسی آب دانشگاه آزاد اسلامی واحد اهواز، 7(15): 79-93.
پیرسته انوشه، ه.، امام، ی.، کاظمینی، س. ع.، و دهقانی، ف. 1396. تأثیر شوری آب آبیاری بر عملکرد جو، رطوبت و شوری خاک در طول فصل رشد و بهره‌وری آب. مجله پژوهش های خاک، 31(2): 155-167.
سعیدی، ر.، ستوده‌نیا، ع.، رمضانی اعتدالی، ه.، کاویانی، ع.، و نظری، ب. 1397. مطالعه تأثیر تنش‌های شوری آب و حاصلخیزی خاک بر تبخیر و تعرق ذرت علوفه‌ای. مجله تحقیقات آب و خاک ایران، 49(4): 945-954.
سعیدی، ر.، رمضانی اعتدالی، ه.، ستوده‌نیا، ع.، کاویانی، ع.، و نظری، ب. 1397. تعیین روابط بین عملکرد و تبخیر-تعرق ذرت علوفه‌ای، در شرایط تنش شوری و محدودیت نیتروژن. مجله پژوهش آب در کشاورزی، 32(3): 351-366.
طباطبایی، س. ع.، کوچکی، ه. ر.، و ملاصادقی، ج. 1392. ارزیابی تحمل به شوری ارقام جو در شرایط آزمایشگاه و مزرعه. فصلنامه فیزیولوژی گیاهان زراعی، 5(20): 87-101.
عالیپور، س.، رستمی، ط.، و غلامی، ش. 1398. بررسی اثر تنش شوری و خشکی ناشی غلظت‌های مختلف کلرید سدیم و پلی‌اتیلن گلایکول بر خصوصیات جوانه‌زنی و رشد گیاهچه در جو دره. مجله تحقیقات بذر، 9(2): 41-51.
علیزاده، ا. 1386. طراحی سیستم‌های آبیاری سطحی. جلد اول. مشهد.
محمدی، م.، لیاقت، ع.، و مولوی، ح. 1389. بهینه‌سازی مصرف آب و تعیین ضرایب حسایت گوجه‌فرنگی در شرایط توأمان تنش شوری و خشکی در منطقه کرج. مجله آب و خاک. 24(3): 583-592.
ویسی‌پور، ا.، مجیدی، م. م.، و میرلوحی، ا. 1390. تحلیل روابط صفات تحت دو شرایط تنش و عدم تنش خشکی در توده‌های اسپرس. مجله علوم گیاهان زراعی ایران. 42(4): 745-756. 
Fatehi, F., Hosseinzadeh, A., Alizadeh, H., Brimavandi, T., and Struik, P. C. 2012. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Journal of Molecular Biology Reports. 39: 6387-6397.
Farooq, M., Hussain, M., Wakeel, A., and Kadambot, H. M. 2015. Salt stress in maize: effects, resistance mechanisms, and management. Journal of the Institute National de la Recherché Agronomies (INRA). 35: 461-481
Fayez, K. A., and Bazaid, S. A. 2014. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13: 45-55.
Giovanni, L., and Giovanna, C. 2008. Reclamation of sodic-saline soils. Barley crop response. Journal of Agron. 4: 279-286.
Hayat, F., Ahmed, M. A., Zarebanadkouki, M., Javaux, M., Cai, G., and Carminati, A. 2020. Transpiration Reduction in Maize (Zea maysL) in Response to Soil Drying. Journal of Frontiers in Plant Science. 10: 1965.
Kingsbury, R.W., Epstein, E., and Pearcy, R.W. 1984. Physiological responses to salinity in selected lines of wheat. Journal of Plant Physiology. 74: 417-423.
Knipfer, T., Danjou, M., Vionne, C., and Fricke, W. 2021. Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path. Journal of Plant, Cell and Environment., 44(2): 458-475.
Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Journal of Plant Biology, 59: 651-681
Mwando, E., Angessa, T., Han, Y., and Li, C. 2020. Salinity tolerance in barley during germination homologs and potential genes. Journal of Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology). 21(2): 93-121.
Pazira, E., and Homaee, M. 2010. Salt leaching efficiency of subsurface drainage systems at presence of diffusing saline water table boundary: a case study in Khuzestan plains, Iran. Proceedings of International of the 2th World Congress of the International Commission of Agricultural Engineering (CIGR), Quebec City, Canada, pp: 1-15
Reeve, R. C., Pillsbury, A. F., and Wilcox, L. V. 1955. Reclamation of saline and high boron soil in the Coachella Valley of California. Hilgardia, 24: 69-91.
Srivastava, A. K., Suprasanna, P., Srivastava, S., and Souza, S. F. 2010. Thiourea mediated regulation in the expression profile of aquaporin’s and its impact on water homeostasis under salinity stress in Brassica juncea roots. Journal of Plant Science, 178: 517–522.
Tavakkoli, E., Rengasamy, P., and McDonald, G.K. 2010. High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany. 61: 4449-4459.
Xin, H., Peiling, Y., Shumei, R., Yankai, L., Guangyu, J., and Lianhao, L. 2016. Quantitative response of oil sunflower yield to evapotranspiration and soil salinity with saline water irrigation. Journal of Agric and Biol Eng. 9(2): 63-73.
Zhang, P., Senge, M., and Dai, Y. 2016. Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Journal of Agricultural Science. 4(2016): 46- 55.