تحلیل عدم‌ قطعیت چندهدفه مدلسازی زراعی-هیدرولوژیکی یک مزرعه نیشکر با زهکشی زیرزمینی از طریق شبیه‌سازی‌های مهار شده مونت‌کارلو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل (مغان)، سازمان تحقیقات، آموزش و ترویج

2 دانشگاه هرمزگان، دانشکده کشاورزی، گروه مهندسی آب، بندرعباس، ایران.

چکیده

شبیه‌سازی‌های زراعی-هیدرولوژیکی در معرض درجات مختلفی از عدم قطعیت قرار دارد. در این رابطه، تحلیل عدم قطعیت می‌تواند بینش مفیدی در خصوص درجه استحکام خروجی‌های مدل فراهم آورد. در این مطالعه، با تلفیق روش برآورد عدم قطعیت درست‌نمایی تعمیم یافته (GLUE) و گونه‌ یکپارچه‌سازی شده الگوریتم بهینه‌سازی رفتار جمعی اجزا (UPSO) یک طرح تحلیل عدم قطعیت چندهدفه ترکیبی (GLUE-UPSO) مبتنی بر شبیه‌سازی‌های مهار شده مونت‌کارلو توسعه یافت. طرح توسعه یافته به‌منظور تحلیل عدم قطعیت مدل‌سازی زراعی-هیدرولوژیکی توزیعی با استفاده از مدل SWAP برای یک مزرعه نیشکر با زهکشی زیرزمینی، واقع در کشت و صنعت نیشکر شعیبیه، خوزستان مورد کاربرد قرار گرفت. نتایج این بررسی حاکی از غیریکتایی قوی اکثر پارامترهای واسنجی شده و اهمیت تحلیل عدم قطعیت شبیه‌سازی‌های مدل SWAP بود. وجود ضرایب همبستگی قوی بین پارامترهای واسنجی شده حاکی از اهمیت واسنجی مولفه‌های مختلف مدل به‌ازای داده‌های اندازه‌گیری شده معیار متنوع به‌صورت هم‌زمان بود. محدوده‌های عدم قطعیت پیش‌بینی 95 درصد اشتقاق یافته برای مولفه‌های هیدرولوژی (رطوبت خاک، نوسانات سطح ایستابی و جریان زه‌آب خروجی از زهکش زیرزمینی)، انتقال املاح (نیم‌رخ غلظت املاح آب خاک و شوری زه‌آب) و بیوفیزیکی مدل (شاخص سطح برگ، عملکرد نی و عملکرد ساکارز) به‌ترتیب، بین 67 تا 90، 23 تا 71 و 75 تا 100 درصد از کل داده‌های اندازه‌گیری شده (اعم از هردو مجموعه داده‌های واسنجی و صحت‌سنجی) را با r-factor بین 58/0 تا 34/1، 43/0 تا 07/1 و 70/0 تا 98/0 در بر گرفتند. نتایج این مطالعه، حاکی از سطح قابل قبول عدم قطعیت مدل و قابلیت روش تلفیقی توسعه یافته در واسنجی و کمی‌سازی عدم قطعیت مولفه‌های مختلف مدل به‌طور هم‌زمان بود.

کلیدواژه‌ها


عنوان مقاله [English]

Multi-Objective Uncertainty Analysis of Agro-Hydrological Modeling of a Sugarcane Farming System with Subsurface Drainage through Restrained Monte-Carlo Simulations

نویسندگان [English]

  • Farzin Parchami-Araghi 1
  • Adnan Sadeghi-Lari 2
1 Agricultural Engineering Research Department, Ardabil Agricultural and Natural Resources Research and Education Center, AREEO, Ardabil, Iran
2 Department of Agriculture, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran.
چکیده [English]

The agro-hydrologic simulations are subject to varying degrees of uncertainty. In this regard, uncertainty analysis can provide useful insights into the level of robustness of the model outputs. In this study, a hybrid multi-objective uncertainty analysis scheme, GLUE-UPSO, based on strained Monte-Carlo simulations was developed, combining Generalized Likelihood Uncertainty Estimation (GLUE) and Unified Particle Swarm Optimization (UPSO). The developed scheme was used for uncertainty analysis of distributed agro-hydrological modeling with SWAP for a sugarcane farming system with subsurface drainage located at Shoaybiyeh Sugarcane Agro-industrial Company farms, Khuzestan, Iran. The results highlighted the strong nonuniqueness of most of the calibrated parameters and the importance of uncertainty analysis of the SWAP simulations. Strong parameter correlations revealed the need for the simultaneous calibration of the model parameters against diverse calibration data. The 95% prediction uncertainty bands obtained for the model's hydrology (soil water content, water table level, sub-surface drainage outflow), solute transport (soil water solute concentration and sub-surface drainage outflow salinity), and biophysical (leaf area index, cane, and sucrose dry yield) components enveloped 67%-90%, 23%-71%, and 75%-100% of the corresponding observed data (including both calibration and validation datasets), respectively, with an r-factor of 0.58-1.34, 0.43-1.07, and 0.70-0.98. The results of the study indicated the acceptable level of model uncertainty and the capability of the developed framework for simultaneous calibration and uncertainty quantification of model components.

کلیدواژه‌ها [English]

  • Inverse modeling
  • Salinity
  • SWAP model
  • Unified Particle Swarm Optimization
پرچمی عراقی، ف.، سمیع‌پور، ف. و صادقی لاری، ع. 1399. کاربرد توزیعی مدل SWAP برای مدل‌سازی زراعی- هیدرولوژیکی زیرروزانه یک سیستم زراعی با زهکشی زیرزمینی، نشریه آبیاری و زهکشی ایران. 14(4): 1136-1121.
پرچمی عراقی، ف.، میرلطیفی، س.م.، قربانی دشتکی، ش.، وظیفه‌دوست، م. و صادقی لاری، ع. 1394الف. توسعه یک چارچوب ریزمقیاس‌سازی به‌منظور برآورد تبخیر-تعرق مرجع زیرروزانه: 2- برآورد تبخیر-تعرق زیرروزانه با استفاده از داده‌های هواشناسی روزانه ریزمقیاس شده، نشریه آب و خاک، 29(6): 1734-1721.
پرچمی عراقی، ف.، میرلطیفی، س.م.، قربانی دشتکی، ش. و صادقی لاری، ع. 1394ب. مقایسه تبخیر-تعرق مرجع پنمن-مانتیث ASCE و پنمن-مانتیث فائو-56 در مقیاس­های زمانی زیرروزانه مختلف: یک مطالعه عددی. نشریه آب و خاک. 29(5): 1189-1173.
صادقی لاری، ع. 1391. بررسی اثرات کنترل سطح ایستابی بر روی میزان جریان، نیتروژن و فسفر خروجی از زهکش‌های زیرزمینی در نواحی خشک (مطالعه موردی: شعیبیه خوزستان). پایان‌نامه دکتری. دانشگاه شهید چمران، اهواز. 178 ص.
Abbaspour, K.C. 2008. SWAT-CUP2: SWAT Calibration and Uncertainty Programs - A User Manual, 2. Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. and Srinivasan, R. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology. 333(2): 413-430.
Bessembinder, J.J.E., Dhindwal, A.S., Leffelaar, P.A., Ponsioen, T. and Singh, S. 2003. Analysis of crop growth. In: van Dam, J.C. and Malik, R.S. (Eds.), Water Productivity of Irrigated Crops in Sirsa District, India: Integration of remote sensing, crop and soil models and geographical information systems. Alterra, Wageningen, The Netherlands, pp. 59-82.
Beven, K.J. 2009. Environmental modelling: an uncertain future? CRC Press, Boca Raton, USA.
Beven, K.J. and Binley, A. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological processes. 6(3): 279-298.
Binley, A. and Beven, K. 2003. Vadose zone flow model uncertainty as conditioned on geophysical data. Groundwater. 41(2): 119-127.
Cho, H. and Olivera, F. 2014. Application of multimodal optimization for uncertainty estimation of computationally expensive hydrologic models. Journal of Water Resources Planning and Management. 140(3): 313-321.
Haverkamp, R., Leij, F.J., Fuentes, C., Sciortino, A. and Ross, P. 2005. Soil water retention. Soil Science Society of America Journal. 69(6): 1881-1890.
Ines, A.V.M. and Mohanty, B.P. 2008. Parameter conditioning with a noisy Monte Carlo genetic algorithm for estimating effective soil hydraulic properties from space. Water resources research. 44(8): W08441, doi:10.1029/2007WR006125.
Jiang, J., Feng, S., Ma, J., Huo, Z. and Zhang, C. 2016. Irrigation management for spring maize grown on saline soil based on SWAP model. Field Crops Research. 196: 85-97.
Kroes, J., van Dam, J., Bartholomeus, R., Groenendijk, P., Heinen, M., Hendriks, R., Mulder, H., Supit, I. and van Walsum, P. 2017. SWAP version 4, Theory description and user manual. Technical Report. Wageningen Environmental Research, ESG Report 2780, Alterra, Wageningen, The Netherlands.
Li, P. and Ren, L. 2019. Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation. Journal of hydrology. 574: 497-516.
Loague, K. and Green, R.E. 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of contaminant hydrology. 7(1): 51-73.
Moriasi, D.N., Arnold, J.G., van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transaction of the ASAE. 50(3): 885-900.
Mugunthan, P. and Shoemaker, C.A. 2006. Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resources Research. 42(10): W10428.
Parchami-Araghi, F., Mirlatifi, S.M., Ghorbani Dashtaki, S. and Mahdian, M.H. 2013. Point estimation of soil water infiltration process using Artificial Neural Networks for some calcareous soils. Journal of Hydrology. 481: 35-47.
Parsopoulos, K.E. and Vrahatis, M.N. 2004. UPSO: A unified particle swarm optimization scheme. In: Simos, T. and Maroulis, G. (Eds.), Lecture Series on Computer and Computational Sciences. VSP International Science Publishers, Zeist, The Netherlands, pp. 868-873.
Pollacco, J.A.P. and Mohanty, B.P. 2012. Uncertainties of water fluxes in soil–vegetation–atmosphere transfer models: Inverting surface soil moisture and evapotranspiration retrieved from remote sensing. Vadose Zone Journal. 11(3).
Scarpare, F.V. 2011. Simulação do crescimento da cana-de-açúcar pelo modelo agrohidrológico SWAP/WOFOST. PhD Thesis, Universidade de São Paulo, Brazil, 163 pp.
Schaap, M.G. and Leij, F.J. 1998. Database-related accuracy and uncertainty of pedotransfer functions. Soil Science. 163(10): 765-779.
Shafiei, M., Ghahraman, B., Saghafian, B., Davary, K., Pande, S. and Vazifedoust, M. 2014. Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region. Agricultural Water Management. 146: 324-334.
Shannon, C.E. 1964. The mathematical theory of communication. Champaign, University of Illinois Press, USA.
Singh, R., Jhorar, R.K., van Dam, J.C. and Feddes, R.A. 2006. Distributed ecohydrological modelling to evaluate irrigation system performance in Sirsa district, India II: Impact of viable water management scenarios. Journal of Hydrology. 329(3-4): 714-723.
Soleimannejad, F. 2004. Six Sigma, Basic Steps and Implementation. AuthorHouse, Bloomington, Indiana, USA, 248 pp.
Supit, I., Hooijer, A.A. and van Diepen, C.A. 1994. System description of the Wofost 6.0 crop simulation model implemented in CGMS. Joint research centre; European commission.
Tolson, B.A. and Shoemaker, C.A. 2008. Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resources Research. 44(4): W04411.
United Nations Environment Programme (UNEP). 2015. Nile River Basin: Nile Basin Adaptation to Water Stress: Comprehensive Assessment of Flood & Drought Prone Areas. (Available at: http://wedocs.unep.org/handle/20.500.11822/14067).
Vazifedoust, M., van Dam, J.C., Feddes, R.A. and Feizi, M. 2008. Increasing water productivity of irrigated crops under limited water supply at field scale. Agricultural water management. 95(2): 89-102.
Wesseling, J., Kroes, J., Oliveira, T.C. and Damiano, F. 2020. The impact of sensitivity and uncertainty of soil physical parameters on the terms of the water balance: Some case studies with default R packages. Part I: Theory, methods and case descriptions. Computers Electronics in Agriculture. 170: 105054.
Xu, X., Jiang, Y., Liu, M., Huang, Q. and Huang, G. 2019. Modeling and assessing agro-hydrological processes and irrigation water saving in the middle Heihe River basin. Agricultural water management. 211: 152-164.
Yang, J., Reichert, P., Abbaspour, K.C., Xia, J. and Yang, H. 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology. 358(1): 1-23.
دوره 15، شماره 3 - شماره پیاپی 87
مرداد و شهریور 1400
صفحه 543-557
  • تاریخ دریافت: 13 اسفند 1399
  • تاریخ بازنگری: 11 فروردین 1400
  • تاریخ پذیرش: 11 خرداد 1400
  • تاریخ اولین انتشار: 11 خرداد 1400