کالیبراسیون ﻣﺪل توزیعی ﻫﻴﺪروﻟﻮژﻳﻜﻰ WetSpa ﺑﺎ اﺳﺘﻔﺎده ازالگوریتم‌های ﺑﻬﻴﻨﻪﺳﺎزى ﭼﻨﺪﻫﺪﻓﻪ عنکبوت بیوه سیاه و NSGA-II

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس حفاظت و بهره‌برداری شرکت آب منطقه‌ای گلستان

2 گروه مهندسی عمران، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران

چکیده

استفاده از ﻣﺪلﻫﺎى ﺑﺎرش-رواﻧﺎب ﻣﻔﻬﻮﻣﻰ بهعنوان یکی اﺑﺰارﻫﺎى ﺳﺎده و در ﻋﻴﻦ ﺣﺎل ﻛﺎرآﻣﺪ در ﻣﺪلﺳﺎزىﻫﺎى ﻫﻴﺪروﻟﻮژﻳﻜﻰ کاربرد فراوان دارند. اﻳﻦ ﻣﺪلﻫﺎ ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ اﻃﻼﻋﺎت ورودى از ﻗﺒﻴﻞ ﺑﺎرش، ﺗﺒﺨﻴﺮ-ﺗﻌﺮق و دﻣﺎى اﻧﺪازهﮔﻴﺮى ﺷﺪه و اﻃﻼﻋﺎت ﺗﻮﭘﻮﮔﺮاﻓﻰ ﺣﻮﺿﻪ، رژﻳﻢ ﺟﺮﻳﺎن را ﺑﺎ اﺳﺘﻔﺎده از رواﺑﻂ رﻳﺎﺿﻰ ﺷﺒﻴﻪﺳﺎزى ﻣﻰﻛﻨﻨﺪ. در پژوهش حاضر، ﻗﺎﺑﻠﻴﺖ اﻟﮕﻮرﻳﺘﻢهای ﺑﻬﻴﻨﻪﺳﺎزى عنکبوت بیوه سیاه(BWO) و NSGA-II در واﺳﻨﺠﻰ ﻣﺪل توزیعی ﻫﻴﺪروﻟﻮژﻳﻜﻰ WetSpa ﺑﻪ ﻣﻨﻈﻮر ﺷﺒﻴﻪﺳﺎزى ﺑﺎرش- رواﻧﺎب ﺣﻮﺿﻪ گرگانرود مورد ارزیابی قرار گرفتهاست. اﻟﮕﻮرﻳﺘﻢهای ﺑﻬﻴﻨﻪﺳﺎزى ﻓﻮق ﺑﻪ ﺻﻮرت ﭼﻨﺪﻫﺪﻓﻪ ﺑﺮاى واﺳﻨﺠﻰ ١١ ﭘﺎراﻣﺘﺮ ﺳﺮاﺳﺮى ﻣﺪل WetSpa اﺳﺘﻔﺎده ﺷﺪند. ﺗﻮاﺑﻊ ﻫﺪف در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه در اﻳﻦ پژوهش ﺷﺎﻣﻞ دو ﺷﺎﺧﺺ ﻧﺶ-ﺳﺎﺗﻜﻠﻴﻒ و ﻧﺶ-ﺳﺎﺗﻜﻠﻴﻒﻟﮕﺎرﻳﺘﻤﻰ بوده ﺗﺎ ﺑﻪوﺳﻴﻠﻪ آﻧﻬﺎ ﻋﻤﻠﻜﺮد ﻣﺪل در ﭘﻴﺶﺑﻴﻨﻰ دﺑﻰﻫﺎى ﺣﺪاﻛﺜﺮى و ﺣﺪاﻗﻠﻰ ﺑﻬﺒﻮد ﻳﺎﺑﺪ. ﭘﺲ از واﺳﻨﺠﻰ و ﺻﺤﺖ‌ﺳﻨﺠﻰ ﻣﺪل، از آن ﺑﺮاى ﺷﺒﻴﻪﺳﺎزى ﺳﻴﻼب در ﻳﻚدوره ﻳﻚ ﺳـﺎﻟﻪ در ﺣﻮﺿﻪ ﻣﺬﻛﻮر اﺳﺘﻔﺎده ﮔﺮدﻳﺪ و ﻗﺎﺑﻠﻴﺖ ﻣﺪل ارزﻳﺎﺑﻰ ﺷﺪ ﻧﺘﺎﻳﺞ ﻧﺸﺎن داد ﻛﻪ اﻟﮕﻮرﻳﺘﻢهای ﺑﻬﻴﻨﻪﺳﺎزى BWO و NSGA-IIﺑﺎ ﺿﺮﻳﺐ همبستگی 8١/٠و 69/0 بهترتیب ﻋﻤﻠﻜﺮد خوب و قابل قبولی را در واﺳﻨﺠﻰ ﻣﺪل داﺷﺘﻪاﻧﺪ. بنابراین عملکرد اﻟﮕﻮرﻳﺘﻢ ﺑﻬﻴﻨﻪﺳﺎزىBWO بسیار بهتر از NSGAII ارزیابی شد. ﻫﻤﭽﻨﻴﻦ، آﻧﺎﻟﻴﺰ ﺣﺴﺎﺳﻴﺖ ﭘﺎراﻣﺘﺮﻫﺎى ﻣﻮﺛﺮ ﻧﺸﺎن داد ﻛﻪ ﺿﺮﻳﺐ رواﻧﺎب ﺳﻄﺤﻰ، ﺣﺴﺎسﺗﺮﻳﻦ ﭘﺎراﻣﺘﺮ ﺳﺮاﺳﺮى ﻣﺪل WetSpa ﺑﻮده اﺳﺖ.

کلیدواژه‌ها


عنوان مقاله [English]

Calibration of WetSpa Distributed Hydrological Model using NSGA-II and Black Widow Multi-Objective Optimization Algorithms

نویسندگان [English]

  • AliReza Donyaii 1
  • Amirpouya Sarraf 2
1 Expert in water resources, Golestan Water Company, Gorgan, Iran
2 Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
چکیده [English]

Conceptual rainfall-runoff (RR) models are one of the simple and efficient tools in hydrological modeling. These models simulate the flow regime using mathematical equations using input data such as precipitation, evapotranspiration and measured temperature, and basin topographic information. Calibration of RR models, e.g. WetSpa which has been developed in Belgium, is a process in which parameter adjustment are made so as to match the dynamic behavior of the RR model to the observed behavior of the catchment. This research presents an application of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Black Widow Optimization (BWO) for multi-objective calibration of WetSpa in Gorganroud river basin, Iran to optimize 11 global parameters of the WetSpa model. The objective functions are Nash–Sutcliffe and logarithmic Nash–Sutcliffe efficiencies in order to improve the model's performance. The WetSpa model then was applied for a period of 1-year flood simulation in the basin and the results were analyzed. Results showed that the evolutionary NSGA-II and BWO algorithms are capable of locating optimal parameter sets in the search space. The measured correlation coefficient in the calibration process was 0.69 and 0.81 for the NSGA-II and BWO algorithms, respectively. Moreover, a sensitivity analysis was conducted on the global parameters in which the surface runoff coefficient was the most sensitive parameter of the model.

کلیدواژه‌ها [English]

  • Black Widow Optimization Algorithm
  • NSGA-II Optimization Algorithm
  • Rainfall-Runoff model
  • Calibration
  • WetSpa Hydrological Model
Afkhamifar, S and Sarraf, A. P. 2020. Comparative study of groundwater level forecasts using hybrid neural network models. Proceedings of the Institution of Civil Engineers – Water Management. https://doi.org/10.1680/jwama.20.00062.
Bahremand, A. and De Smedt, F. 2008.Distributed hydrological modeling and sensitivity analysis in Torysa watershed, Slovakia. Water Resources Management Journal. 22(3): 393-408.
Bahremand, A. and De Smedt, F. 2010.Predictive analysis and simulation uncertainty of a distributed hydrological model.Water Resources Management DOI 10.1007/s11269-010-9584-1.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. 2002. A fast and elitist multi-objective genetic algorithm: NSGAـII, IEEE Trans. Evol. Computation. 6(2): 182-197.
De Smedt, F., Liu, Y.B. and Gebremeskel, S. 2000. Hydrological modelling on a catchment scale using GIS and remote sensed land use information. Brebbia, C.A. (ed.), 295-304. Risk Analyses II, WIT Press, Southampton, Boston.
Donyaii A. R. and Sarraf A. P. 2020. Optimization of Reservoir Operation using a Bioinspired Metaheuristic Based on the COVID-19 Propagation Model. NMCE. 5(1): 15-28 URL: http://nmce.kntu.ac.ir/article-1-289-en.html.
Donyaii, A. R., Sarraf, A. P. and Ahmadi, H. 2020a.A Novel Approach to Supply the Water Reservoir Demand Based on a Hybrid Whale Optimization Algorithm. Shock and vibration journal. 1-10 https://doi.org/10.1155/2020/8833866.
Donyaii, A. R., Sarraf, A. P., Ahmadi, H. 2020b. Using composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir, Journal of Hydraulic Structures. 6(2): 1-22.doi: 10.22055/jhs.2020.34402.1142.
Donyaii, A. R., Sarraf, A. P. and Ahmadi, H. 2021.Comparison of meta-heuristic algorithms in optimum operation of a single-reservoir dam system. Proceedings of the Institution of Civil Engineers – Engineering Sustainability.https://doi.org/10.1680/jensu.20.00065.
Gupta, H.V., Sorooshian, S. and Yapo, P.O. 1998. Toward improved calibration of hydrological models: multiple and noncommensurable measures of information. Water Resour. Res. 34(4): 751-763.
Hayyolalam, V. and   Pourhaji Kazem, A. A. 2020. Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249.https://doi.org/10.1016/j.engappai.2019.103249.
Kuczera, G. 1997. Efficient subspace probabilistic parameter optimization for catchment models. Water Resour. Res. 33(1): 177–185.
Liu, Y.B. and De Smedt, F. 2004. WetSpa Extension, A GISـbased hydrologic model for flood prediction and watershed management documentation and user manual, Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel.
Liu, Y.B., Gebremeskel. S., De Smedt, F., Hoffmann, L. and Pfister, L. 2003. A diffusive transport approach for flow routing in GISـ based flood modelling. Journal of Hydrology 283:91-106.
Moazami Goudarzi. F., Sarraf A. P. and Ahmadi H. 2020.Prediction of runoff within Maharlu basin for future 60 years using RCP scenarios. Arabian Journal of Geosciences, 13:605, 1-17.
Safari, A., De smedt, F. and Moreda, F. 2009. WetSpa model application in the distributed model intercomparison project (DMIP٢). Journal of Hydrology 419: 78-89.
Sarraf, A.P. and Donyaii, A.R. 2020. Optimization of multi-objective operation of the Vashmgir Dam reservoir in Golestan province, based on the climate change conditions. Research project conducted by Golestan Water Company.
Shafii, M. and Smedt, F.D. 2009. Multiـ objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm. Hydrology and Earth System Sciences. 13: 2137-2149.
Van Griensven, A. 2002. Developments towards integrated water quality modeling for river basins, PhD Thesis, Vrije Universiteit Brussel, Belgium.
Wang, Z.M., Batelaan, O. and De Smedt, F. 1997.A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa). Phys. Chem. Earth. 21(3): 189-193.