Derivation and validation of parametric pedotransfer functions of soil water infiltration in different regions

Document Type : Original Article

Authors

1 Department of Water Engineering, Faculty of Agriculture, Urmia University

2 Associate Professor, Department of Water Engineering, Faculty of Agriculture, Urmia University

3 Department of Soil Science, Faculty of Agriculture, Urmia University

Abstract

Soil water Infiltration plays an important role in the water cycle of nature. However, since the direct measurement of soil water infiltration is laborious, time-consuming and expensive. Therefore, in this study was conducted to investigate the possibility of estimating the coefficients of water infiltration equations such as Kastiakov, Kastiakov-Lewis, Horton and USA Soil Conservation Service (SCS) using readily available soil properties and to evaluate the validity of these functions outside of their derivation regions. Therefore, soil physical properties and cumulative infiltration were measured in two different regions (T1 and T2). Parametric functions were derived using T1 location measurements and validation was performed using independent T2 measurements. Cumulative infiltration was measured using double rings with three replications at 78 points. Parametric functions were created using multiple linear regression. The highest accuracy of parametric functions in the derivation stage was related to SCS equations with the coefficient of explanation (R2) equal to 0.66 and the lowest accuracy with the value of R2 equal to 0.04 was related to the power of Horton equation. In the validation stage, the accuracy of the functions showed a large decrease. R2 changes range from 0.00 to 0.26, normalized root mean square error (nRMSE) range from 1.76 to 80.93 and geometric mean error ratio (GMER) range from 0.94 to 1.73 Was obtained. Therefore, in this study, the use of parametric functions to estimate the coefficients of infiltration equations outside of their derivation regions was not efficient.

Keywords


ثامنی، ع.، پاکجو، م.، موسوی، ع. و کامکار، ع. 1393. ارزیابی چند رابطه نفوذ آب به خاک با کاربرد آب‌های شور و سدیمی. نشریه پژوهش آب در کشاورزی. 28(2). 395-408.
سپهوند، ع.، طایی-سمیرمی، م.، میرنیا، س. و  مرادی، ح. 1390. ارزیابی حساسیت مدل‌های نفوذ نسبت به تغییرپذیری رطوبت خاک. آب و خاک. 25(2).
شاکر، پ.، خداوردیلو، ح. و ممتاز، ح. 1396. آزمودن ورودی‌های جدید برای برآورد هدایت هیدرولیکی نزدیک اشباع خاک. تحقیقات کاربردی خاک. 5(1).
فاخر، ا.، وفاخواه، م. و صادقی، ح. 1393. ارزیابی عملکرد مدل‌های مختلف نفوذ تجمعی در کاربری‌ها و بافت‌های مختلف خاک با استفاده از شبیه‌ساز باران. دانش آب و خاک. 24(1). 183-193.
قربانی، ش.، همایی، م. و مهدیان، م. 1388. برآورد پارامترهای نفوذ آب به خاک با استفاده از شبکه‌های عصبی مصنوعی. مجله آب و خاک. 23-1.
محمدی، م. و رفاهی، ح .۱۳۸۴. تخمین پارامترهای معادلات نفوذ توسط خصوصیات فیزیکی خاک. مجله علوم کشاورزی ایران. 36 (6). 1398-1391.
نشاط، ع. و پاره­کار، م. 1386. مقایسه روش­های تعیین سرعت نفوذ عمودی آب در خاک. مجله علوم کشاورزی و منابع طبیعی. 14(3):186-196.
نیشابوری، م.، فاخری­فرد، ا.، قرسادی­زاده، د.، صادقیان، ن. و خیری، ج. 1388. ضرایب مدل‌های نفوذ فیلیپ، کاستیاکف و کاستیاکف اصلاح‌شده بر مبنای جرم مخصوص ظاهری و رطوبت اولیه خاک. مجله دانش آب و خاک. 1-19.
Assouline, S. 2006. Modeling the relationship between soil bulk density and the hydraulic conductivity function. Vadose Zone Journal. 5(2): 697-705.
Bannayan, M and Hoogenboom, G. 2009. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crop Research. 111:290-302.
Ben-Hur, M. and Assouline, S. 2002. Tillage effects on water and salt distribution in a Vertisol during effluent irrigation and rainfall. Agronomy Journal. 94(6): 1295-1304.
Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Advanced Soil Science. 9. 177-213.
Brady, N.C. and Weil, R.R. 1996. The nature and properties of soils. Prentice-Hall Inc.
Chowdary, V.M., Damodhara-Rao M. and Jaiswal, C.S. 2006. Study of infiltration process under different experimental conditions. Agricultural water management. 83(1-2): 69-78.
Corradini, C., Morbidelli, R., Flammini, A. and Govindaraju, R.S. 2011. A parameterized model for local infiltration in two- layered soils with a more permeable upper layer. Hydrology. 396(3- 4): 221-232.
Deborah, A.M. and Moody, J.A. 2001. Comparison of soil infiltration rates in burned and unburned mountainous watersheds. Hydrological Process. 15(15): 2893-2903.
Ehlers, W. 1975. observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Science. 119(3): 242-249.
Gee, G.W. and Or, D. 2002. Particle-size analysis. In: Dane J.H., and Topp G.C. (Eds.), Methods of soil analysis- Part 4. SSSA Book Series No. 5. SSSA, Madison. 255–293.
Ghorbani-Dashtaki, GH., Homaee, M. and Loiskandl, W. 2016. Towards using pedotransfer functions for estimating infiltration parameters, Hydrological Sciences Journal. 61(8): 1477-1488.
Green, W.H. and Ampt, G.A. 1911. Studies on soil physics. The Journal of Agricultural Science. 4(1): 1–24. doi:10.1017/S0021859600001441.
Grossman, RB. and Reinsch, TG. 2002. Bulk density and linear extensibility. In: Dane JH, Topp CG (eds) Methods of soil analysis: part 4, physical methods SSSA Book Ser. 5.4. SSSA, Madison. 201–228
Hatt, B. and Le-Coustumer, S. 2008. PRACTICE NOTE 1: In Situ Measurement of Hydraulic Conductivity.
Hillel, D. 1982. Introduction to soil physics, 364. Academic press New York.
Horton, R.E. 1940. An approach towards a physical interpretation of infiltration capacity. Soil Science Society of America Journal. Proc. 5:399-417.
Kostiakov, A.N. 1932. On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of amelioration. Transactions of the Sixth Committee of the International Society of Soil Science. 1: 7–21.
Lal, R. and Shukla, M.K. 2004. Principles of soil physics. CRC Press.
Lin, H., McInnes, K., Wilding, L. and Hallmark, C., 1999. Effects of soil morphology on hydraulic properties II. Hydraulic pedotransfer functions. Soil Science Society of America Journal. 63(4): 955-961.
Moroke, T., Dikinya, O. and Patrick, C. 2009. Comparative assessment of water infiltration of soils under different tillage systems in eastern Botswana. Physics and Chemistry of the Earth, Parts A/B/C. 34(4): 316-323.
Navabian, M., Liaghat, A.M. and Homaee, M. 2004. Estimating soil saturated hydraulic conductivity using pedotransfer functions. Journal of Agricultural Engineering Research. 4(16): 1-11.
Pandey, P.K. and Pandey, V. 2018. Estimation of infiltration rate from readily available soil properties (RASPs) in fallow cultivated land. Sustainable Water Resources Management. https://doi.org/10.1007/s40899-018-0268y.
Reynolds, W.D., Drury, C.F., Tan, C.S., Fox, C.A. and Yang X.M. 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma. 152(3): 252-263.
Philip, J.R. 1957. Theory of infiltration: 1. The infiltration equation and its solution. Soil Science. 83: 435–448. doi:10.1097/00010694-195706000-00003.
Pieri, C.J.M.G. 1992. Fertility of Soils: A Future for Farming in the West African Savannah. Springer-Verlag, Berlin, Germany.
Punamia, B.C., Jain, AK. and Jain, AK. 2005. Soil mechanics and foundations (16th thoroughly revised and enlarged edition). Laxmi Pub. House, New Delhi, p 8170087910. ISBN: 9788170087915.
Richards, L. A. 1931. Capillary conduction of fluid through porous mediums. Physics. 1:318-333.
Sepaskhah, A. and Tafteh, A. 2013. Pedotransfer function for estimation of soil-specific surface area using soil fractal dimension of improved particle-size distribution. Archives of Agronomy and Soil Science. 59(1). doi: 10.1080/03650340.2011.602632.
SCS (Soil Conservation Service). 1972. National engineering handbook, section 4: hydrology. Washington, DC: Department of Agriculture, 762.
Shirazi, M.A. and Boersma, L. 1984. A unifying quantitative analysis of soil texture. Soil Science Society of America Journal. 48: 142–147.
Šimůnek, J., Jarvis, N.J., van Genuchten, M.T. and Gärdenäs, A. 2003. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology 272(1). 14-35.
Patle, GH., Sikar, T.T., Singh-Rawat, K. and Singh, S. 2019. Estimation of infiltration rate from soil properties using regression model for cultivated land. Geology, Ecology, and Landscapes. 3(1). https://doi.org/10.1080/24749508.2018.1481633.
Walkley, A. and Black, I.A. 1934. An examination of Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. J. Soil Sci. 37: 29-37.
Wangemann, S., Kohl, R. and Molumeli, P. 2000. Infiltration and percolation influenced by antecedent soil water content and air entrapment. TRANSACTIONS of the ASAE 43(6), 1517-1523.