ارزیابی مدل FAO AquaCrop برای برآورد عملکرد گندم با استفاده از داده‏ های ماهواره‏ ای لندست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه آبیاری دانشکده کشاورزی دانشگاه تربیت مدرس

2 استاد گروه آبیاری دانشکده کشاورزی دانشگاه تربیت مدرس

3 پژوهشکده حفاظت خاک وآبخیزداری،سازمان تحقیقات آموزش و ترویج کشاورزی

چکیده

ایران دارای پهنه‏های گسترده تحت‏کشت است که برآورد دقیق‏ و به‏موقع عملکرد در چنین پهنه‏هایی برای هرگونه مدیریت کشاورزی از اهمیت بالایی برخوردار است. در سال‏های اخیر، روش‏های مختلفی برای برآورد عملکرد محصولات زراعی بر پایه مشاهدات سنجش از دور ارائه شده ‏است. هدف اصلی این مقاله ارزیابی مدل AquaCrop برای برآورد عملکرد گندم با استفاده از اطلاعات تصاویر ماهواره‏ای است. در این پژوهش یکی از مراحل اولیه و مهم، برآورد میزان تبخیر-تعرق واقعی با استفاده از الگوریتم توازن انرژی سطح زمین (SEBAL) و تصاویر ماهواره Landsat8 است. تبخیر-تعرق حاصل از تصاویر ماهواره‏ای با داده‏های تبخیر-تعرق تشت تبخیر ایستگاه هواشناسی سینوپتیک زنجان مقایسه شده و نتایج قابل قبولی در شاخص‏های آماری (36/0MAE =،45/0RMSE = و 94/0R2=) به دست آمد. در ادامه از مدل رشد گیاهی AquaCrop در جهت شبیه‌سازی رشد گندم استفاده شد. مقدار شاخص‏های آماری RMSE، MAE و R2 برای داده‏های (CC) ، تعرق، تصاویر ماهواره‏ای و مدل AquaCrop به‏ترتیب برابر (06/11، 2/9 درصد و 94/0) و (633/0، 359/0 میلی‏متر در روز و 95/0) به‏دست آمد. نتایج حاصل از میانگین عملکرد محصول پیکسل‏های مزرعه‏ای برابر 189/1 تن در هکتار به‏دست آمد و در مقایسه با آمارنامه کشاورزی وزارت جهاد کشاورزی با استفاده از شاخص آماری RMSE، MAE و مطالعات میدانی انجام شده (1-2/1 تن در هکتار) در این پژوهش نشان می‏دهد که میزان برآورد عملکرد گندم در منطقه مورد مطالعه قابل قبول است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating FAO AquaCrop Model for Estimating Wheat Performance Using Landsat Satellite Images Information

نویسندگان [English]

  • Ali Sardari 1
  • Mehdi Homaee 2
  • Aliakbar Noroozi 3
1 M.Sc, Department of Irrigation and Drainage Science, Tarbiat Modares University, Tehran; Iran
2 Professor; Department of Soil Science; Tarbiat Modares University; Tehran; Iran
3 SCWMRI, AREEO
چکیده [English]

Iran has a large area under cultivation, and reliable and timely crop yield forecasts are critical for making timely food supply decisions. As a result, several methods for estimating crop yield based on remote sensing observations have been published in recent years. One of the first and most critical steps in this study is to estimate real evapotranspiration using the SEBAL algorithm and high spatial and temporal resolution Landsat8 satellite images. The evapotranspiration obtained from satellite images was compared to evaporation data from the Zanjan synoptic meteorological station's evaporation pan, with statistical indicators (MAE=0/36, RMSE=0/45, R2 =0/94) indicating satisfactory results. The AquaCrop model and its four execution steps were used to simulate the product yield, and the necessary coefficients and data from the model were applied in satellite imagery calculations for each of these steps. For comparing CC data determined by satellite imagery and AquaCrop model, the RMSE, MAE, and R2 indices were respectively 11/06, 9/2 percent, and 0/94, and 0.633 and 0/359 mm/day and 0/95 for transpiration. The average yield was calculated to be 1/189 ton/ha in field pixels and its comparison with agricultural statistics and field studies (1-1/2 ton/ha) showed acceptable estimates for wheat yield in the area of this study.

کلیدواژه‌ها [English]

  • AquaCrop
  • SEBAL
  • evapotranspiration
صدوقی، ل.،همایی، م.، نوروزی، ع.  و اسدی کپورچال، س. 1395. برآورد عملکرد برنج با استفاده از مدل VSM و تصاویر ماهواره‌ای در استان گیلان. مجله علوم زراعی. 6 (3): 397-410.
شمس نیا، س. و پیرمرادی، ن. 1392. شبیه‌سازی عملکرد گندم دیم به نوسانات اقلیمی با استفاده از مدل AquaCrop در استان فارس. مجله بین‌المللی نوآوری علوم مهندسی. 2(4): 41-56.
Anup, K. Prasad, a., Lim Chai, b., Ramesh, P., Singh, a. b., and Menas Kafatos, b. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. International journal of Applied Earth Observation and Geoinformation. 8(2): 26-33.
Bastiaanssen, W. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology. 229: 87-100.
Bastiaanssen, W.G.M., Waters, R., Allen, R., Tasumi, M and Terzza, R.2002. Advanced Training and User's Manual of Surface Energy Balance Algorithms for Land. Nasa EOSDIS/Synergy grant from the Raythoen Company through the Idaho Department of water Resources. 1: 1-98.
Constantin, J., Magali W., Clément M., Bernard L., and Olivier T. 2015. The soil-crop models STICS and AqYield predict yield and soil water content for irrigated crops equally well with limited data. Agricultural and Forest Meteorology. 206: 55-68.
Dente, L., Satalino, G., Mattia, F. and Rinaldi, M. 2008. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote sensing of Environment. 112(4): 1395-1407.
Van Diepen, C.V., Wolf, J., Van Keulen, H. and Rappoldt, C. 1989. WOFOST: a simulation model of crop production. Soil use and management. 5(1):16-24.
Ferencz, C., Bognar, P., Lichtenberger, J., Hamar, D., Tarcsai, G., Timár, G., Molnár, G., Pásztor, S.Z., Steinbach, P., Székely, B. and Ferencz, O.E. 2004. Crop yield estimation by satellite remote sensing. International Journal of Remote Sensing. 25(20):4113-4149.
Godwin, D.C. and Allan Jones, C. 1991. Nitrogen Dynamics in Soi‐Plant Systems. Modeling plant and soil systems. 31: 287-321.
Groten, S.M.E., 1993. NDVI-crop monitoring and early yield assessment of Burkina Faso. International Journal of Remote Sensing. 14(8), pp.1495-1515.
Hadria, R., Duchemin, B., Baup, F., Le Toan, T., Bouvet, A., Dedieu, G. and Le Page, M. 2009. Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: case study in Central Morocco. Agricultural water management. 96(7): 1120–1127.
Heng, L., K. Hsiao, T. Evett, S. Howell, and P. Steduto. 2009. Validation the FAO AquaCrop model for irrigated and water deficient field Maize. Agronomy Journal. 101:488-498.
Hsiao, T.C., Heng, L., Steduto, P. 2009. AquaCrop-the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal. 101,448-459.
Iqbal, M.A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A., del Rio, S. 2014. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management. 135: 61–72.
Kroes, J. G. and Van Dam, J. C. 2003. Reference Manual SWAP version 3.03. (Ed). Alterra- report: Alterra Green World Research (773): 1-211.
Li, Y., Zhou, Q., Zhou, J., Zhang, G., Chen, C. and Wang, J. 2014. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions. Ecological modelling. 291: 15–27.
Marjorie Battude., Ahmad, A, B., David, M., Jerome, C., Mireille, H., Claire, M, S., Valerie, L, D. and Valerie, D. 2016. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sensing of Environment. 184: 668-681
Mo, X. and Liu, S. 2001. Simulating evapotranspiration and photosynthesis of winter wheat over the growing season. Agricultural and Forest Meteorology. 109(10): 203-222.
Nielsen, D.C., Miceli‐Garcia, J.J. and Lyon, D.J. 2012. Canopy cover and leaf area index relationships for wheat, triticale, and corn. Agronomy journal. 104(6): 1569-1573.
Padilla, F.L.M., Maas, S.J., González-Dugo, M.P., Mansilla, F., Rajan, N., Gavilán, P. and Domínguez, J. 2012. Monitoring regional wheat yield in Southern Spain using the GRAMI model and satellite imagery. Field Crops Research. 130: 145-154.
Raes, D., Steduto, P., Hsiao, T.C., and Fereres, E. 2009. AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101(3): 438-447
Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E. 2009. AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal. 101(3): 438-447.
Villalobos, F.J. and Fereres, E. 1990. Evaporation measurements beneath corn, cotton, and sunflower canopies. Agronomy Journal. 82(6): 1153-1159