Designing a monitoring network for detecting groundwater pollution based on intrinsic vulnerability, pollution sources and groundwater value: a case study in Khash plain, Sistan and Balouchestan province, Iran

Document Type : Original Article

Authors

1 Assistant Professor, Department of Water Engineering, Kashmar Higher Education Institute, Kashmar, Iran

2 Research Assistant in East Water & Environment Research Institute (EWERI)

3 water engineering department, kashmar higher education institute.

Abstract

Groundwater quality degradation due to geogenic and anthropogenic factors can endanger the human health. Therefore, designing a groundwater pollution monitoring network can provide the information needed for achieving water resources management goals and improving water and food security. The main objective of this study was to introduce an integrated approach for designing a groundwater pollution monitoring network based on index-based groundwater “protection-monitoring priority” maps created with GIS. The raster layer of “protection-priority index” was prepared by combining aquifer intrinsic vulnerability maps, produced based on the DRASTIC model, and estimated groundwater value based on the quantity and quality of groundwater. Moreover, by overlying pollution-sources risk maps and capture zone maps for wells, qanats and springs, the “monitoring-priority index” was obtained. By overlying the "protection-priority index" and "monitoring-priority index" layers as well as considering the direction of groundwater flow, sampling points were determined. By applying the proposed method, 15 wells were selected for groundwater sampling in Khash-Poshtkuh study area. Water samples collected from these wells revealed that, the concentration of toxic elements such as Arsenic is higher than the permissible limit for drinking in some wells in the southeast and north of Khash aquifer and the north of Poshtkuh aquifer which have geogenic origin.

Keywords


انتظاری، ف. 1393. تدوین دستورالعملی کاربردی برای پایش کیفی آب زیرزمینی در دشت نیشابور. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
آقانباتی، ع. 1383. زمین‌شناسی ایران. سازمان زمین‌شناسی و اکتشافات معدنی کشور.
رجبیان مقدم، ز.، مجیدی، ن.، جودوی، ع.، مجیدی، م. و نخعی صدقی، ح. 1398. ارزیابی کیفیت منابع آب زیرزمینی دشت خاش- پشتکوه با تأکید بر فلزات سنگین. سی و هشتمین کنگره ملی علوم زمین، اردیبهشت‌ماه، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران.
معاونت امور فنی، دفتر امور فنی و تدوین معیارها، وزارت نیرو. 1391. دستورالعمل پایش کیفیت آب‌های زیرزمینی، نشـریه شماره 620. انتشارات سازمان برنامه‌وبودجه، تهران.
معاونت امور فنی، دفتر امور فنی و تدوین معیارها، وزارت نیرو. 1392. دستورالعمل تعیین حریم کیفی آب‌های زیرزمینی، نشـریه شماره 621. انتشارات سازمان برنامه‌وبودجه، تهران.
میرزائی ندوشن، ف.، بزرگ حداد، ا. و خیاطی خلقی، م. ۱۳۹۵. طراحی دو هدفه شبکه پایش سطح آب زیرزمینی با NSGII در دشت اشتهارد. مجله تحقیقات آب‌وخاک ایران. 67 (2): 260-206.
Aller, L., Bennet, T., Leher, L. H., Petty, R. J. and Hackett, G. 1987. Standardized Drastic System for Evaluating Groundwater Pollution Potential Using Hydrogeologic. Oklahoma: EPA. Ada, Oklahoma: U.S. Environmental Protection Agency.
Alexakis, D.E., Kiskira, K. and Gamvroula, D. 2021. Evaluating toxic element contamination sources in groundwater bodies of two Mediterranean sites. Environmental Science Pollution Research International. 28(26): 34400–34409. https://doi.org/10.1007/s11356-021-12957-z
Duda, R., Zdechlik, R. and Kania, J. 2021. Semiquantitative Risk Assessment Method for Groundwater Source Protection Using a Process-based Interdisciplinary Approach. Water Resources Management. 35: 3373–3394. https://doi.org/10.1007/s11269-021-02898-0
Johansson, P. O., Scharp, C., Alveteg, T. and Choza, A. 1999. Framework for Ground Water Protection‐the Managua Ground Water System as an Example. Groundwater. 37(2): 204-213. https://doi.org/10.1111/j.1745-6584.1999.tb00975.x
Joodavi, A., Aghlmand, R., Podgorski, J., Dehbandi, R. and Abbasi, A. 2021. Characterization, geostatistical modeling and health risk assessment of potentially toxic elements in groundwater resources of northeastern Iran. Journal of Hydrology: Regional Studies, 37, 100885. https://doi.org/10.1016/j.ejrh.2021.100885
Li, X., Gao, Y., Qian, H. and Wu, H. 2017. Groundwater vulnerability and contamination risk assessment of the Weining Plain, using a modified DRASTIC model and quantized pollution loading method. Arabian Journal of Geoscience. 10 (21): 1-11. https://doi.org/10.1007/s12517-017-3255-y
Li, X., Wu, H. and Qian, H. 2020. Groundwater contamination risk assessment using intrinsic vulnerability, pollution loading and groundwater value: a case study in Yinchuan plain, China. Environmental Science Pollution Research International 27(36): 45591–45604. https://doi.org/10.1007/s11356-020-10221-4
Ioffe, S. and Szegedy C. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167.
National Institute for Industrial Environment and Risks 2013. Long Term Monitoring Optimization (LTMO)– Concepts and tools.
Ning, S. K. and Chang, N. B. 2005. Screening the relocation strategies of water monitoring quality stations by compromise programming. Journal of the American Water Resources Association (JAWRA). 41(5): 1039-1052. DOI: HYPERLINK "https://doi.org/10.1111/j.1752-1688.2005.tb03784.x" https://doi.org/10.1111/j.1752-1688.2005.tb03784.x
Nixdorf, E., Sun, Y.Y., Lin, M. and Kolditz, O. 2017. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin. The Science of the Total Environmental. 605:598–609.
Task Committee on the State of the Art in Long-Term Groundwater Monitoring Design of the Environmental and Water Resources Institute. 2003. Long-Term Groundwater Monitoring: The State of the Art. Reston, VA. American Society of Civil Engineers (ASCE).
Wang, J., He, J. and Chen, H. 2012. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment. 432: 216-226
Todd, D. and Mays, L. 2005. Groundwater Hydrology. 3rd Edition, John Wiley and Sons, Inc., Hoboken, 652 p.
Zaporozec, A. 2004. Groundwater contamination inventory: a methodological guide with a model legend for groundwater contamination inventory and risk maps. Paris: IHP-VI, series on groundwater, 2nd ed. UNESCO