Vulnerability Assessment of Sabzevar Aquifer (Northeast of Iran) Using Drastic Model

Document Type : Original Article

Authors

1 Water and Soil Department, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran

2 Associate professor, Water and Soil Department, Faculty of Agriculture, Shahrood University of Technology, Iran

3 Assistant professor, Water and Soil Department, Faculty of Agriculture, Shahrood University of Technology

4 Agriculture faculty, shahrood university of technology, shahrood, iran

5 MS of Environmental Geology, Young and Elite Researchers Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Abstract

In countries with arid and semi-arid climates, conserving water resources is important. For this purpose, different models were presented to determine the vulnerability of areas. In this research, a vulnerability map of Sabzevar aquifer has been prepared using a drastic model. Sabzevar aquifer located in the northeast of Iran with an area of 5455.4 square kilometers has a dry and desert climate with hot and dry summers and cold winters. The drastic model is obtained through 7-layer overlap (groundwater depth, net nutrition, aquifer environment, soil type, topography, influence of unsaturated area and hydraulic conductivity of the aquifer) and shows a detailed map of the aquifer vulnerability. ArcGis10.5 software was used to draw the drastic model map. The numerical value of the drastic model in the study area is between 81 and 159 (from low vulnerability to high vulnerability). Drastic map showed that a very small area from the west of the study area has low vulnerability and the central areas of the plain have high vulnerability. Other parts of the region are moderately vulnerable. Shallow groundwater depth in the central areas of the plain and also low slope in the above area has the greatest impact on the vulnerability of the region. Due to the volume of agricultural activities in the central areas of the plain, measures should be taken to prevent possible contamination of the aquifer. Due to the fact that the concentration of nitrate in groundwater sources was not available in the study area, so electrical conductivity was used to validate the zoning of the drastic model. The overlap of electrical conductivity with the drastic map showed that the electrical conductivity was high in the center of the vulnerable plain. This can also confirm the accuracy of the drastic model.

Keywords


حسن‌زاده م.، مؤمنی رق آبادی م. و رباطی ا.، 1400. آسیب­پذیری دشت حاجی‌آباد بر اساس مدل‌های DRASTIC و SINTACS، مجله هیدروژئومورفولوژی. 26(8): 183-2002.
رحمانی م. و آذری ط.، 1398. کاربست مدل دراستیک در بررسی روند توسعه صنعتی دشت ساری با تأثیر بر آلودگی زیست‌محیطی، پژوهش و فناوری محیط زیست. 6 :  83 - 92 
رمضانی سربندی. م.، قضاوی ر.، دخانی س. و مرتضوی س. م.، 1396. بررسی پتانسیل آلودگی آب‌های زیرزمینی با استفاده از مدل دراستیک و گادزدر محیط GIS (مطالعه موردی: دشت رفسنجان)، هیدروژئومورفولوژی. 10 : 65 - 80 
قنبری ع. ر.، 1399. بررسی آسیب­پذیری آبخوان دشت خنج-فیشور لارستان با استفاده از مد دراستیک، جغرافیای طبیعی، 47 :  95 – 115
مدبری ه.، رهبر هاشمی م. و عاشورنیا م.، 1397. تحلیل آسیب­پذیری منابع آب زیرزمینی و آنالیز حساسیت مدل دراستیک با استفاده از روش‌های حذف نقشه و تک مؤلفه‌ای با استفاده از تکنیک مونت‌کارلو، پژوهش و فناوری محیط زیست. 4: 21 - 30 
AlaviTehrrani, N. 1976. Geology and petrography in ophiolite rang NW of Sabzevar Khorasan/iran with special regard to metamorphism and genetic relations in an ophiolitesuit, Disscrtaion der Mathematisch-Naturwissensehaftlichen Fakultar der universitat Saarlande. Geol. Survey of Iran, Rep. No.: 43.
Al-Rawabdeh, A. M., Al-Ansari, N. A., Al-Taani, A. A. and Knutsson, S. 2013. A GIS-Based DRASTIC model for assessing aquifer vulnerability in Amman- erqa groundwater basin, Jordan. Engineering Journal. 55: 490-504.
Aller, L., Bennet, T., Leher, J. H., Petty, R. J. and Hackett, G. 1987. DRASTIC A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Setting, EPA – 600/ 2, 87 – 035.  Ada, Oklahoma: U. S. Environmental protection Agency.
ArcGIS Spatial Analyst Tutorial, 2008. ESRI, United States of America.
Bai, L., Wang, Y. and Meng F. 2011. Application of DRASTIC and Extension theory in the groundwater vulnerability evaluation. Water and Environment Journal. 263: 381-391.
Chitsazan, M. and Akhtari, Y. 2009. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran plain, Khuzestan, Iran. Water Resource Management. 23: 1137-1155.
Connell, L. D. and Daele, G. V. D. 2003. A quantitative approach to aquifer vulnerability mapping, Journal of hydrology. 276(1): 71-88.
Goya, R. and Dassargues, A. 2005. Current trend and future challenge in groundwater vulnerability assessment using overlay and index methods, Jounal of environmental geology. 396: 549-559.
Harter, T. and Walker, L.G. 2001. Assessing vulnerability of groundwater. US Natural Resources Conservation Service. (Vol. 3). California.
Hasiniaina F., Jianwei Z. and Luo, G. 2010. Regional assessment of groundwater vulnerability in Tamtsag basin, Mongolia using DRASTIC model. Journal of American Science. 166: 65–78.
Kato H., Nakagami K. and Cooper, M. 2016. Participatory approaches to environmental management: future design for water resources management. In: Nakagami K, Kubota J, Setiawan B eds Sustainable water management, Springer, Singapore.
Moghadam, H. S., Khedr, M. Z., Arai, S., Stern, R. J., Ghorbani, G., Tamura, A. and Ottley, C. J. 2015. Arc-related harzburgite–dunite–chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: a model for formation of podiform chromitites. Gondwana Research. 27: 575-593.
Nobre, R. C. M., Rotunno Filho, O. C., Mansur, W. J., Nober, M. M. M. and Cosenza, C. A. N. 2007. Groundwater vulnerability and risk mapping using GIS. Modeling and a fuzzy logic tool. Journal of Contamination Hydrology. 94: 277-292.
Pathak, D. R. and Hiratsuka, A. 2011. An integrated GIS based fuzzy pattern recognition model to computer ground water vulnerability index for decision making, Journal of Hydro-environment Research. 5: 63-77.
Piscopo, G. 2001. Groundwater vulnerability map. Center of Natural Resources, Department of land and water conservation, New South Wales, Australia, 14p.
Shirazi S. M., Imran, H. M., Akib, S., Yusop, Z., Harun, Z. B. 2013. Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environment Earth Science. 70: 2293–2304.
Shojaat, B., Hassanipak, A., Mobasher, K. and Ghazi, A. 2003. Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran. Journal of Asian Earth Sciences 21: 1053-1067.
Stigter, T. Y., Ribeiro, L. and Carvalho Dill, A. M. M. 2006. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater assessment method in comparison with in to agricultural regions in the south of Portugal. Journal of Hydrology. 14: 79-99.
Tilahun. K. and Merkel. B.J. 2010. Assessment of Groundwater Vulnerability to Pollution in Dire Dawa, Ethiopia using DRASTIC, Environmental Earth Sciences. 59: 1485-1496.
Voudouris K., Kazakis N., Polemio M. and Kareklas K. 2010. Assessment of intrinsic vulnerability using the DRASTIC Model and GIS in the Kiti aquifer, Cyprus. European Water. 30: 13–24.
US EPA.1985. DRASTIC: A standard system for evaluating groundwater potential using hydrogeological settings. Ada, Oklahoma, WA/EPA Series, 163pp.
Zandi, Z., Mehrabi, B. and Masoodi, M. 2007. Geochemistry and genesis of podiform chromite deposits in Forumad Sabzevar. The 20th Symposium on Geosciences.