Application of Shuffled Frog Leaping Algorithm for calibration of several solar radiation models with the aim of improving the accuracy of estimating reference evapotranspiration in two climatic samples of Iran

Document Type : Original Article

Authors

1 PhD Candidate in Water Structural Engineering, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

2 Water Eng. Department, Faculty of Agriculture, Shahid Bahonar University of kerman

3 Water engineering department, Agriculture faculty, Bahonar university of Kerman, Kerman, Iran.

4 Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran;

Abstract

The FAO Penman-Monteith (FAO-56 PM) model is proposed as a standard model to estimate reference evapotranspiration (ETO) in various climates. Different models are used to estimate the total solar radiation (Rs) as one of the essential inputs of this model. This study aimed to calibrate and validate four Rs estimation models (Ångström-Prescott, Hargreaves-Samani, Mubiru et al., and Chen and Li) in Ahvaz (with arid climate) and Hamedan (with semi-arid climate) stations during the 1992-2020 climate period and the effect of these models on the ETO estimation. The coefficients of these models were calibrated by the intelligent shuffled frog leaping algorithm (SFLA). To evaluate the efficiency of these models, the estimated Rs values were compared with measured values. Based on the root mean square error (RMSE), the coefficient of determination (R2) statistics and Nash-Sutcliffe, the A-P model with RMSE=1.929, R2=0.918, NS=0.896 and Mobiro et al. model with RMSE=2.925, R2=0.875, NS=0.860 showed better performance than the other models in Ahvaz and Hamedan stations, respectively. A decrease of about 20% was observed in the percentage of ETO difference between, the calculated and the estimated Rs compared to the measured Rs in 2 stations at all of the models.

Keywords


بابامیری، ا.، دین‌پژوه، ی. و اسدی، ا. 1392. واسنجی ضرایب هفت روش تخمین تبخیرتعرق گیاه مرجع مبتنی بر تابش خورشیدی در حوضه آبریز دریاچه ارومیه. نشریه دانش آب و خاک. 23 (4): 143-158.
بهمنش، ج.، مهدی زاده، س.، علیقلی نیا، ت. و رسولی مجد، ن. 1396. ارزیابی مدل‌های برآورد تابش خورشیدی در تخمین تبخیرتعرق مرجع. مجله علمی-پژوهشی علوم و مهندسی آبیاری. 40 (1): 119-129.
خلیلی، ع. و رضایی صدر، ح. 1376. برآورد تابش کلی خورشید در گستره ایران بر مبنای داده‌های اقلیمی. تحقیقات جغرافیایی. 46: 15-35.
سبزی پرور، ع.، تفضلی، ف.، زارع ابیانه، ح.، با نژاد، ح.، موسوی بایگی، م.، غفوری، م.، محسنی موحد، ا. و مریانجی، ز. 1387. مقایسه چند مدل برآورد تعرق گیاه مرجع در یک اقلیم سرد نیمه‌خشک به‌منظور استفاده بهینه از مدل‌های تابش. مجله آب وخاک (علوم و صنایع کشاورزی). 22 (2): 328-340.
سلطانی، س. و مرید، س. 1384. مقایسه برآورد تابش خورشید با استفاده از روش هارگریوز-سامانی و شبکه‌های عصبی مصنوعی. مجله دانش کشاورزی. 15 (1): 69-79.    
علیزاده، ا. 1386. اصول هیدرولوژی کاربردی. انتشارات دانشگاه امام رضا. 21: 808.
قمرنیا، ه. و یوسفوند، م. 1397. مقایسه روش‌های مختلف برآورد تبخیرتعرق مرجع بر اساس روش‌های تابش خورشیدی در اقلیم‌های مختلف ایران. مجله مدیریت آب و آبیاری. 8 (2): 237-250.
موسوی بایگی، م.، اشرف، ب. و میان‌آبادی، آ. 1389. ارزیابی چهار مدل تبخیرتعرق گیاه مرجع در یک اقلیم نیمه‌خشک ایران با هدف انتخاب بهترین مدل تابش. مجله پژوهش‌های حفاظت آب و خاک. 17 (4): 87-105.
مهدی زاده، س. و بهمنش، ج. 1395. واسنجی ضرایب معادله آنگستروم-پریسکات در ایستگاه‌های منتخب حوضه آبریز دریاچه ارومیه. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران. 6 (3): 78-91.
Aladenola, O.O. and Madramootoo, C.A. 2013. Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada Theoretical and Applied Climatology. 118:377- 385. 
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrig Drain Report modeling and application. Journal of Hydrology. 285:19- 40.
Angstrom, A. 1924. Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society. 50: 121-126.
Besharat, F., Dehghan, A.A. and Faghih, A.R. 2013. Empirical models for estimating global solar radiation: A review and case study. Renewable & Sustainable Energy Reviews. 21:798- 821.
Chen, J. l., Li, G. SH. 2012.  Estimation of monthly average daily solar radiation from measured meteorological data in Yangtze River Basin in China. International Journal of Climatology.
Cunha, A. C., Filho, L. R. A. G., Tanaka, A. A., Goes, B. C. and  Putti, F. F. 2021.  Influence of the estimated global solar radiation on the reference evapotranspiration obtained through the Penman-Monteith FAO 56 method. Agricultural Water Management.  243: 106491.
De Martonne, E. 1926. Aerisme, et índices d’aridite. Comptesrendus de L’Academie des Sciences, 182: 1395–1398. 
Duffie, J.A. and Beckman, W. A. 1980. Solar Energy of Thermal Processes. John Wiley, New York.1-42.
Eusuff M. M. and Lansey K. E. 2003. Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management. 129(3):210- 225.
Eusuff, M., Lansey, K. and Pasha, F. 2006. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Engineering Optimization. 38:129- 154.
Hargreaves, G. and Samani, Z.A. 1982. Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division. 108:225- 230.
Irmark, S., Irmark, A., Allen, R.G. and Jones, J.W. 2003. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. Journal of Irrigation and Drainage Engineering. 129:336- 347.
Jamei, M., Ahmadianfar, I., Jamei, M., Karbaci, M., Heidari. A. A. and Chen, H. 2021. Forecasting Daily Global Solar Radiation in Hot Semi-Arid Climate Using a Novel Hybrid Machine Learning Paradigm. Research Square. 1-48.
Khanmohammadi, N., Rezaie, H., Montaseri, M. and Behmanesh, J. 2017. The effect of reference-condition-based temperature modification on the trend of reference evapotranspiration in arid and semi-arid regions. Agricultural Water Management. 194:204- 213.
Li, Y.L., Cui, J.Y., Zhang, T.H. and Zhao, H.L. 2003. Measurement of evapotranspiration of irrigated spring wheat and maize in a semi-arid region of north China. Agricultural Water Management. 61:1- 12.
Maroufpoor, S., Bozorg-Haddad, O. and Maroufpoor, E. 2020. Reference evapotranspiration estimating based on optimal input combination and hybrid artificial intelligent model: Hybridization of artificial neural network with grey wolf optimizer algorithm. Journal of Hydrology. 588:125060.
Moradi, I. 2009. Quality control of global solar radiation using sunshine duration hours. Energy. 34:1- 6.
Mubiru, J., Banda, E.J.K.B., D'Ujanga, F. and Senyonga, T. 2007. Assessing the performance of global solar radiation empirical formulations in Kumpala, Uganda. Theoretical and Applied Climatology. 87:179- 184.
Ndulue, E., Onyekwelu, I., Nnaemeka Ogbu, K. and Ogwo, V. 2019. Performance evaluation of solar radiation equations for estimating reference evapotranspiration (ETO) in a humid tropical environment. Journal of Water and Land Development. 42:124- 135.
Pereira, A.R., Sentelhas, P.C., Folegatti, M.V., Villa Nova, N.A., Maggiotto, S.R. and Pereira, F.A.C. 2002. Substantiation of the daily FAO-56 reference evapotranspiration with data from automatic and conventional weather stations. Revista Brasileira de Meteorologia. 10:251- 257.
Prescott, J.A. 1940. Evaporation from water surface in relation to solar radiation. Transactions of the Royal Society of South Australia. 64:114- 118.
Rahimi, I., Bakhtiari, B., Qaderi, K. and Aghababaie, M. 2012. Calibration of Angstrom equation for estimating Solar Radiation using Meta-Heuristic Harmony Search Algorithm (Case study : Mashhad-East of Iran). Energy Procedia. 18:644- 651.
Sabziparvar, A.A., Mousavi, R., Marofi, S., Ebrahimipak, N.A. and Heidari, M. 2013. An Improved Estimation of the Angstrom-Prescott Radiation Coefficients for the FAO56 Penman-Monteith Evapotranspiration Method. Water Resources Management. 27:2839- 2854.
Tabari, H., Hosseinzadeh Talaee, P., Willems, P. and Martinez, Ch. 2016. Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations. Hydrological Sciences Journal. 61:610- 619.
Xing, Z., Chow, L., Meng, F.R., Rees, H.W., Stevens, L. and Monteith, J. 2008. Validating evapotranspiration equations using Bowen Ratio in New Brunswick. Maritime Canada. Sensors.  8(1): 412- 428.
Zhao, N., Zeng, X. and Han, S. 2013. Solar radiation estimation using sunshine hour and air pollution index in   China. Energy Conversion and Management. 76:846- 851.