Developing of optimum cropping pattern in Mahabad irrigation and drainage network under different irrigation scenarios at farm and network scale

Document Type : Original Article

Authors

1 Urmia University

2 Department of Water Engineering, Urmia University, Iran

3 Professor of Water Engineering, Department of Water Engineering, Urmia University. Urmia. Iran

4 Professor, Department of Water Engineering, College of Agriculture, University of Urmia, Urmia, Iran

Abstract

Optimization of cropping pattern can be the best approach to reduce water consumption with maintaining maintain or increasing agricultural productions and consequently increase farmers' incomes. In this research, the cropping pattern of Mahabad irrigation and drainage network (with an approximation area of 12,000 ha) was determined using the PSO optimization algorithm with the objective of increasing the net benefit of the network based on the specified amount of delivered water and increasing water productivity. Optimization was done in 6 treatments of full and deficient irrigation and two strategies of deficient irrigation implementation (H1: in delivered water to the network and farm and H2: in delivered water to the network). Finally, the amount of water consumption, net benefit and economic productivity in the optimal cropping pattern were compared with the present condition. The results showed that in H1 strategy, with water consumption equal to the present condition, the amount of net benefit and economic productivity in the optimum cropping pattern increased about 16.7% compared to the current situation. In H2 strategy, productivity increased compared to the present situation in all treatments. Even by a reduction of about 40% of delivered water to the network, economic productivity increased about 37% compared to the present condition.

Keywords


بی­نام. 1395. بهنگام سازی نیاز آبی گیاهان زراعی و باغی کشور در استان آذربایجان غربی، موسسه تحقیقات خاک و آب کشور- موسسه پژوهش­های برنامه­ریزی اقتصاد کشاورزی و توسعه روستایی.
رضاوردی­نژاد، و. 1389. الگوی کشت و تخصیص آب مصرفی در شرایط شوری و محدودیت آب در شبکه­ آبیاری سمت راست آبشار. رساله دکتری. دانشگاه تهران.
قربانی، خ.، مفتاح هلقی، م. و کرامت زاده، ع. 1399. بهینه‌سازی الگوی کشت با استفاده از برنامه‌ریزی آرمانی (مطالعه موردی: حوضه آبریز قره‌سو). نشریه پژوهش‌های حفاظت آب و خاک. 27(1): 163-188.
کریم زاده، م.، علی زاده، ا. و انصاری، ح. 1395. بهینه‌سازی بهره‌وری آب و کارایی انرژی در انتخاب الگوی کشت. نشریه آبیاری و زهکشی ایران. 6(10): 849-859.
محمدی، ح.، بوستانی، ف. و کفیلزاده، ف. 1391. تعیین الگوی کشت بهینه با استفاده از الگوریتم بهینه‌سازی چندهدفه غیرخطـی فـازی: مطالعه موردی. آب و فاضلاب. 4:43-55.
میرزایی، ش.، ذاکرنیا، م. و شهابی فر، م. 1395. تعیین الگوی کشت بهینه در شبکه آبیاری و زهکشی سد گلستان با استفاده از الگوریتم ژنتیک. مجله علوم و مهندسی آبیاری. 40(3): 181-190.
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome. 300(9): D05109.‏
Barati, K., Abedi Koupai, J., Darvishi, E., Arzani, A. and Yousefi, A. 2020. Crop Pattern Optimization using System Dynamics Approach and Multi-Objective Mathematical Programming. Journal of Agricultural Science and Technology. 22(5): 1397-1412.‏
Barikani, A., Ahmadian, M., Khalilian, S. and Chizari, A. 2012. Sustainable Conjunctive Use of Surface Water and Under Ground Water Resources Determining Optimal Cropping Patterns in Qazvin Basin. Agricultural Aconomics and Development. 20(77): 29-56.‏
Benli, B. and Kodal, S. 2003. A non-linear model for farm optimization with adequate and limited water supplies: application to the South-east Anatolian Project (GAP) Region. Agricultural water management. 62(3): 187-203.‏
Chen, Y., Zhou, Y., Fang, S., Li, M., Wang, Y. and Cao, K. 2021. Crop pattern optimization for the coordination between economy and environment considering hydrological uncertainty. Science of The Total Environment, 151152.‏
Doorenbos, J. and Kassam, A.H. 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, FAO, Rome, Italy.
Hassan, I., Raza, M. A., Khalil, M. and Rehmat, I. 2004. Determination of optimum cropping pattern in the Faisalabad Division (Pakistan). International Journal of Agricultural Biology. 6(5): 901-903.‏
Kennedy, J. and Eberhart, R.C. 1995. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks. IEEE Press. Piscataway, N. J.
Kijne, J. W., Barker, R. and Molden, D. J. (Eds.). 2003. Water productivity in agriculture: limits and opportunities for improvement (Vol. 1). Cabi.‏
Kipkorir, E. C. and Raes, D. 2002. Transformation of yield response factor into Jensen's sensitivity index. Irrigation and Drainage Systems. 16(1): 47-52.‏
Moolman, C. E., Blignaut, J. N. and Van Eyden, R. 2006. Modelling the marginal revenue of water in selected agricultural commodities: A panel data approach. Agrekon. 45(1): 78-88.‏
Reca, J., Roldán, J., Alcaide, M., López, R. and Camacho, E. 2001a. Optimisation model for water allocation in deficit irrigation systems: I. Description of the model. Agricultural water management. 48(2): 103-116.‏
Reca, J., Roldán, J., Alcaide, M., López, R. and Camacho, E. 2001b. Optimisation model for water allocation in deficit irrigation systems: II. Application to the Bémbezar irrigation system. Agricultural Water Management. 48(2): 117-132.‏
Rezaei, F., Safavi, H. R. and Zekri, M. 2017. A hybrid fuzzy-based multi-objective PSO algorithm for conjunctive water use and optimal multi-crop patt3ern planning. Water resources management. 31(4): 1139-1155.‏