Investigation of water requirement system in determining the actual amount of irrigation water of peanut plant based on inverse solution of yield function under water stress conditions

Document Type : Original Article

Authors

1 Department of Irrigation and soil physics, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran .

2 Assistant professor of Department of Irrigation and soil physics, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.

3 Associate Professor of Irrigation and Soil Physics, Soil and Water Research Institute, Agricultural Research and Education Organization, Karaj, Iran

Abstract

Estimating water requirement and determining the actual amount of water is one of the most important factors in the management of agricultural water resources and one of the requirements of any irrigation project. The present study was conducted to investigate the water requirement system in determining the actual amount of peanut irrigation water based on the inverse solution of yield function under water stress in two crop years 2017 and 2018 in Guilan province. The experimental design was performed in the form of split plots in a randomized complete block design with three replications. The main factor of irrigation management included rainfed and 40, 60, 80, 100% Water requirement supply and sub treatment included two cultivars of peanut Guil and Jonobi. The results showed that the highest evapotranspiration in supplying 100% of water requirement in 2017 and 2018 was 446.7 and 524.1 mm in the Jonobi cultivar and 438.5 and 521.9 mm in the Guil cultivar, respectively. in the measured and estimated values of irrigation need by the water requirement system, the values of the coefficient of determination in the Jonobi and Guil cultivars are 0.65 and 0.64 respectively, and the root mean square error for Jonobi and Guil cultivars were 52.60 and 52.24, respectively, and the mean error deviation was 15.53 and 15.03, respectively. The agreement Wilmot index and efficiency coefficient of the model in 2017 and 2018 were 0.95 and 0.75 for the Jonobi cultivar and 0.95 and 0.76 for the Guil cultivar, respectively. According to the available results and statistical indicators, the water demand system provided a reasonable estimate of the actual amount of irrigation water in two peanut cultivars.

Keywords


احسانی، ع. ارزانی، ح. فرحپور، م. احمدی، ح. محمد جعفری، م. و اکبرزاده، م. 1391. برآورد تبخیر و تعرق با استفاده از اطلاعات آب و هوایی، خصوصیات گیاه مرتع و خاک به کمک برنامه نرم­افزار  Cropwat (مطالعه موردی: منطقه استپی استان مرکزی ایران، ایستگاه رودشور). فصلنامة علمی-پژوهشی تحقیقات مرتع و بیابان ایران. 19 (1): 1-16.
تافته، آ. نخجوانی مقدم، م. اصلان اگدرنژاد، م. سپهری صادقیان، س. 1399. بررسی توابع تولید در تخمین عملکرد ذرت دانه­ای با استفاده از ضرایب واکنش عملکرد بومی در ایران. تحقیقات آب و خاک ایران. 51 (10): 2529-2519.
تافته، آ.، اگدرنژاد، ا.،  ابراهیمی پاک، ن. 1397. بررسی توابع تولید محصول برای برآورد عملکرد گیاه کلزا در بازه­های زمانی مختلف. نشریه حفاظت منابع آب و خاک. 7 (3): 113-103.
دهقانی­سانیج، ح. کنعانی، ا. اخوان، س. 1396. ارزیابی تبخیر-تعرق ذرت و اجزای آن و ارتباط آن­ها با شاخص سطح برگ در سیستم آبیاری قطرهای سطحی و زیرسطحی. نشریه آب و خاک. 31 (6): 1560-1549.
سعیدی، ر. 1400. جداسازی تبخیر و تعرق در کشت ذرت و بررسی پاسخ آن­ها به سطوح مختلف آبیاری. مجلۀ تحقیقات آب و خاک ایران.   52 (5): 1263-1273.
شیخ الاسلامی، ن. بیژن قهرمان، ب. مساعدی، ا. داوری، ک. مهاجرپور، م. 1393. پیش­بینی تبخیر و تعرق گیاه مرجع با استفاده از روش آنالیز مؤلفه­های اصلی و توسعه مدل رگرسیونی خطی چندگانه (مطالعه موردی: ایستگاه مشهد). نشریه آب و خاک (علوم و صنایع کشاورزی). 28 ( 2): 429-420.
عبدزادگوهری، ع و صادقی­پور، ا. 1398. مدیریت علف­های هرز در مزارع بادام­زمینی. انتشارات اندیشمندان پارس. 62 ص.
عبدزادگوهری، ع. a1400. بررسی عملکرد، تابع تولید و بهره­وری مصرف آب دو رقم بادام­زمینی تحت شرایط کم­آبیاری در روش­های مختلف آبیاری. نشریه آبیاری و زهکشی ایران. 2 (15): 467-482.
عبدزادگوهری، ع. b1400. بررسی اثر کم­آبیاری و دو شیوه آبیاری بر عملکرد و اجزای عملکرد دو رقم بادام­زمینی. نشریه پژوهش آب در کشاورزی. ب. 35 (1): 467-482.
عبدزادگوهری، ع. تافته، آ. ابراهیمی­پاک، ن. و بابازاده، ح. c1400. برآورد ضرایب تنش، گیاهی و واکنش عملکرد به آب در بادام­زمینی تحت سطوح مختلف آبیاری. تحقیقات آب و خاک ایران. 52 (5): 1263-1273.
فلاح قالهری، غ. و داداشی رودباری، ع. 1393. برآورد نیاز آبی گندم بهاره توسط مدل  CROPWATدر شهرستان مشهد. سومین کنگره ملی کشاورزی ارگانیک و مرسوم. دانشگاه محقق اردبیلی.
Aboelill, A.A. Mehanna, H.M. Kassab, OM. Abdallah, EF. 2012. The response of peanut crop to foliar spraying with potassium under water stress conditions. Australian Journal of Basic and Applied Sciences. 6: 626-634.
Aydinsakir, K. Dinc, N. Buyuktas, D. Bastug, R. Toker, R. 2016. Assessment of different irrigation levels on peanut crop yield and quality components under mediterranean conditions. Journal of Irrigation and Drainage Engineering. 16:1-9.
Cecilia, M. Tojo, S.  Suleiman, A. Anothai, j.  Flitcroft, I. Hoogenboom, G. 2013. Scheduling irrigation with a dynamic crop growth model and determining the relation between simulated drought stress and yield for peanut. Irrigation Science.31: 889–901.
Cemal, K. Bakal, H. Gulluoglu, L. Arioglu, H. 2017. The effect of twin row planting pattern and plant population on yield and yield components of peanut (Arachis hypogaea L.) at main crop planting in cukurova region of Turkey. Field Crops. 22(1): 24-31.
Devi, MJ. Sinclair, T.R. Vadez, V. 2010. Genotypic variability among peanut (Arachis hypogea l.) in sensitivity of nitrogen fixation to soil drying. Plant and Soil. 330:139-148.
Doorenbos, J. and Kassam, A. H. 1979.Yield response to water. irrigation and drainage. Paper No. 33. Food and Agricultural Organization. Rome. Italy. 193p.
Eberbach, P.L. Humphreys, E. and Kukal, S.S. 2011. The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agricultural Water Management. 98(12): 1847-185.
El-Boraie, F.M. Abo-El-Ela, HK. Gaber, AM. 2009. Water requirements of peanut grown in sandy soil under drip irrigation and biofertilization. Australian Journal of Basic and Applied Sciences. 3: 55-65.
El-Metwally, I. Saudy, H. 2021. Interactional impacts of drought and weed stresses on nutritional status of seeds and water use efficiency of peanut plants grown in arid conditions. Gesunde Pflanzen. 73: 407-416.
Greaves, G. and Wang, Y. 2017. Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan. Plant Production Science. 36:1-13.
Gulluoglu, L., Bakal, H. Onat, B. El Sabagh, A. and Arioglu. H. 2016. Characterization of peanut (Arachis hypogaea L.) seed oil and fatty acids composition under different growing season under Mediterranean environment. Journal of Experimental Biology and Agricultural Sciences. 4: 564-571.
Jamieson, P.D. Porter, J.R. Wilson, D.R. 1991. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research. 27: 337–350.
Jongrungklang, N. Toomsan, B. Vorasoot, N. Jogloy, S. Boote, K. Hoogenboom, G. Patanothai, A. 2011. Rooting traits of peanut genotype with dierent yield response to pre-flowering drought stress. Field Crops Research. 120: 262-270.
Nkuna, R.T. Wang, C.T. Wang, X.Z. Tang, Y.Y. Wang, Z.W. Zhang, J.C. 2021. Sodium azide induced high-oleic peanut (Arachis hypogaea L.) mutant of virginia type. Genetic Resources and Crop Evolution. 68: 1759-1767.
Raes, D. Steduto, P. Hsiao, T.C. and Fereres, E. 2017. Reference manual AquaCrop. FAO. Land and Water Division. Rome. Italy. 25p.
Raes, D. 2004. Budjet: A soil water and salt balance model. Refrence Manual. Version 6.0 (http://www.iupware.be and select downloads and next software. last updated June 2004).
Tafteh, A. Babazadeh, H. Ebrahimipak, N.A. and Kaveh, F. 2014a. Optimization of irrigation water distribution using he MGA method and comparison with a linear programming method. Irrigation and Drainage. 63(5): 590–598.
Tafteh, A. Babazadeh, H. EbrahimiPak, N.A. and Kaveh, F .2013. Evaluation and improvement of crop production functions for simulation winter wheat yields with two types of yield response factors. Journal of Agricultural Science 5: 111-122.
Tafteh, A. Ebrahimipak, N.A. Babazadeh, H. and Kaveh, F. 2014b. Determine yield response factors of important crops by different production functions in qazvin plain. Ecology, Environment and Conservation 20(2): 415-422.
Thangthong, N. Jogloy, S. Tasanai Punjansing,T. Craig, K. Kvien, Kesmala, T. and Vorasoot, N. 2019. Changes in root anatomy of peanut (Arachis hypogaea L.) under dierent durations of early season drought. Agronomy. 9: 215. 1-18.
Willmott, C.J. 1982. Some comments on the evaluation of model performance. Bulletin of American Meteorology Society. 63: 1309-1313.