توسعه چارچوبی مفهومی برای مدل‌سازی هیدرولوژیکی اجتماعی با رویکرد پویایی سیستم کیفی، محدوده مورد مطالعه: حوضه آبریز مشهد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر/ مرکز پژوهشی آب و محیط زیست شرق

2 استاد/ گروه مهندسی آب/ دانشگاه فردوسی مشهد

3 گروه هیدروانفورماتیک، مرکز پژوهشی آب و محیط زیست شرق.مشهد

چکیده

مدیریت پایدار منابع آبی دشوارترین چالشی‌ست که جوامع انسانی با آن رویاروی‌اند و بهبود درک برهمکنش‌های پیچیده در سیستم‌های پیوسته انسان‌ـ‌آب، در تحقق آن بسیار مورد توجه است. در دهه اخیر، مدل‌سازی‌های هیدرولوژیکی اجتماعی از پرکاربردترین روش‌ها در توصیف برهمکنش‌ها و هم‌تکاملی سیستم‌های انسانی‌ـ‌‌‌هیدرولوژیکی می‌باشند. در این مطالعه، که اولین کوشش به‌منظور تدوین چارچوبی مفهومی برای مدل‌سازی هیدرولوژیکی اجتماعی با هدف درک سیستم‌های پیوسته انسان‌ـ‌آب در ایران است، پس از توسعه چارچوب مفهومی، به‌کارگیری آن مبتنی‌بر رویکرد پویایی سیستم کیفی در حوضه مشهد نشان داده شده است. در چارچوب پیشنهادی اثر تصمیمات مدیریتی بر سیستم طبیعی در قالب متغیر واکنش رفتاری و متأثر از حساسیت اجتماعی تعریف شده است. طبق نتایج، هم‌اکنون آرکتایپ‌های اصلاحات ناموفق، محدودیت رشد و موفقیت برای موفق در حوضه مشهد حاکم می‌باشند. در واقع واکنش رفتاری متأثر از تقاضای آب، منجر به تصمیمات مدیریتی با هدف رشد اقتصادی سودجویانه و بی‌توجه به محدودیت‌های سیستم طبیعی شده است. بدین‌ترتیب بهره‌برداری افسارگسیخته از منابع آبی بی‌توجه به نرخ تجدیدپذیری صورت گرفته و حساسیت اجتماعی با هدف حفظ پایداری سیستم آبی، نقشی در تصمیمات مدیریتی نداشته است. مادامی‌که نقش سایر سطوح اجتماعی حساس به آب در واکنش رفتاری نادیده گرفته شود، حلقه‌ حساسیت اجتماعی به‌عنوان متعادل کننده ارتباط سیستم‌های طبیعی‌ـ‌انسانی، همواره مفقود و معلول ا‌ست.

کلیدواژه‌ها


عنوان مقاله [English]

Development of a conceptual framework for socio-hydrological modeling using qualitative system dynamics approach, Case study: Mashhad basin

نویسندگان [English]

  • Shiva Gholizadeh Sarabi 1
  • Kamran Davary 2
  • Bijan Ghahraman 2
  • mojtaba shafiei 3
1 Researcher/ East Water and Environmental Research Institute (EWERI)
2 Professor/ Department of Water Engineering/Ferdowsi University of Mashhad
3 Hydroinformatic Department, East Water and Environmental Research Institute (EWERI), Mashad, Iran
چکیده [English]

Sustainable water resources management is the hardest challenge facing human communities, and improvement of understanding complex interactions in coupled human-water systems is very important in achieving it. In recent decade, socio-hydrological modelling is of the most widely used methods for description of interactions and co-evolution of human-hydrological systems. In this study which is the first attempt to develop a conceptual framework for socio-hydrological modelling in Iran with the aim of understanding coupled human-water systems, after development of the conceptual framework, its application in Mashhad basin based on the qualitative system dynamics approach has been shown. In the proposed framework, the impact of managerial decisions on the natural system has been defined as the behavioural response variable, influenced by community sensitivity. Results showed that, now, fixes that fail, limits to growth, and success to the successful are dominant archetypes in Mashhad basin. In fact, behavioural response influenced by water demand has resulted in managerial decisions aiming at profit-oriented economic growth with no consideration for the natural system limitation. Accordingly, overexploitation of water resources regardless of the renewal rate of water resources has occurred, and community sensitivity with the aim of maintaining the water system sustainability has played no role in managerial decision-making. As long as the role of other water-sensitive social levels in behavioural response is ignored, the community sensitivity loop as a balancer balancing the human-nature relationship remains missing and defective forever.

کلیدواژه‌ها [English]

  • Community sensitivity
  • Conceptual framework
  • Coupled human-water system
  • Qualitative system dynamics
  • Socio-hydrology
قلی‌زاده سرابی، ش.، داوری، ک.، قهرمان، ب. و شفیعی، م. 1398. مطالعه تاریخی سیستم پیوسته انسان ـ آب از منظر هیدرولوژی اجتماعی، محدوده مورد مطالعه: حوضه آبریز مشهد. تحقیقات منابع آب ایران،  4 (15): 148ـ 170.
قلی‌زاده سرابی، ش.، قهرمان، ب. و شفیعی، م. 1397. علم جدید هیدرولوژی اجتماعی: در جستجوی درک مفهوم هم‌تکاملی انسان و آب. تحقیقات منابع آب ایران،  5 (14): 351 ـ 359.
مافی، ع.ا. و سقایی، م. 1389. نگاهی به اقتصاد گردشگری در کلان شهرها (مطالعه موردی: کلان‌شهر مشهد). جغرافیا و توسعه ناحیه‌ای، 15: 267ـ 292.
Annin, P. 2006. The Great Lakes water wars. Island Press, Washington DC, 384 p.
Arthington, A. H. and Pusey, B. J. 2003. Flow restoration and protection in Australian rivers. River Research and Applications. 19:377–395.
Bagheri, A. and Hosseini, S. A. 2011. A system dynamics approach to assess water resources development scheme in the Mashhad plain, Iran, versus sustainability. ASCE Conference on the 4th International Perspective on Water Resources & the Environment, 4-6 January, Singapore.
Berkes, F. 2007. Understanding uncertainty and reducing vulnerability: Lessons from resilience thinking. Natural Hazards. 41:283–295.
Beven, K. J. 2012. Rainfall-runoff modelling: the primer. Wiley Chichester, 457 p.
Blair, P. and Buytaert, W. 2016. Socio-hydrological modelling: a review asking “why, what and how?”. Hydrology and Earth System Sciences. 20:443-478.
Briguglio, L., Cordina, G., Farrugia, N. and Vella, S. 2009. Economic vulnerability and resilience: Concepts and measurements. Oxford Development Studies. 37:229–247.
Bunch, M. J., Morrison, K. E., Parkes, M. W. and Venema, H. D. 2011. Promoting Health and Well-Being by Managing for SocialEcological Resilience: the potential of integrating ecohealth and water resources management Approaches. Ecology and Society. 16:6–23.
Button, K. 2002. City Management and Urban Environmental Indicators. Ecological Economics. 40(2): 217–233.
Carey, M., Baraer, M., Mark, B. G., French, A., Bury, J., Young, K. R. and McKenzie, J. M. 2014. Toward hydro-social modeling: Merging human variables and the social sciences with climateglacier runoff models (Santa River, Peru). Journal of Hydrology. 518:60–70.
Cumming, G., Barnes, G., Perz, S., Schmink, M., Sieving, K., Southworth, J., Binford, M., Holt, R., Stickler, C. and Holt, T. 2005. An Exploratory Framework for the Empirical Measurement of Resilience. Ecosystems. 8:975–987.
Daily, G. C. 1997. Nature’s services: societal dependence on natural ecosystems. Island Press, Washington DC, 412 p.
Davies, E. G. R. and Simonovic, S. P. 2011. Global water resources modeling with an integrated model of the social–economic–environmental system. Advances in Water Resources. 34:684–700.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L. and Blöschl, G. 2013b. Socio-hydrology: conceptualising human flood interactions. Hydrology and Earth System Sciences. 17:3295–3303.
Dooge, J. C. 1973. Linear theory of hydrologic systems. Technical Bulletin No. 1468. US Department of Agriculture, Agricultural Research Service, Washington, DC, 337 p.
Elagib, N. A., Musa, A. A. and Sulieman, H. M. 2017. Socio-hydrological Framework of Farmer-Drought Feedback: Darfur as a Case Study. Water Resources in Arid Areas: The Way Forward:461-479.
Elshafei, Y., Coletti, J. Z., Sivapalan, M. and Hipsey, M. R. 2015. A model of the socio-hydrologic dynamics in a semiarid catchment: Isolating feedbacks in the coupled human-hydrology system. Water Resources Research. 51:6442–6471.
Elshafei, Y., Sivapalan, M., Tonts, M. and Hipsey, M. R. 2014. A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach. Hydrology and Earth System Sciences. 18:2141–2166.
Falkenmark, M. 1977. Water and mankind: A complex system of mutual interaction. Ambio. 6:3-9.
Falkenmark, M. 1979. Main problems of water use and transfer of technology. GeoJournal. 3:435-443.
Fernald, A., Tidwell, V., Rivera, J., Rodríguez, S., Guldan, S., Steele, C., Ochoa, C., Hurd, B., Ortiz, M., Boykin, K. and Cibils, A. 2012. Modeling sustainability of water, environment, livelihood, and culture in traditional irrigation communities and their linked watersheds. Sustainability. 4:2998–3022.
Fishman, C. 2011. The Big Thirst: The secret life and turbulent future of water. Simon and Schuster, New York, 418 p.
Folke, C. 2003. Freshwater for Resilience: A Shift in Thinking. Philosophical Transactions of the Royal Society B. 358:2027–2036.
Forbes, B. C., Fresco, N., Shvidenko, A., Danell, K. and Chapin, F. S. 2004. Geographic variations in anthropogenic drivers that influence the vulnerability and resilience of social–ecological systems. Ambio. 33:377–382.
Ford, A. 1999. Modeling the environment. Island Press, Washington, 401 p.
Forrester, J. 1961. Industrial dynamics. MIT Press, Cambridge, 464 p.
Forrester, J. 1969. Urban dynamics. MIT Press, Cambridge, 290 p.
Garcia, M., Portney, K. and Islam, S. 2015. A question driven sociohydrological modeling process. Hydrology and Earth System Sciences Discussions. 12:8289–8335.
Gholizadeh Sarabi, S. H., Davary, K., Ghahraman, B. and Shafiei, M. 2021. A perceptual socio-hydrological model of co-evolutionary coupled human–water system based on historical analysis, Mashhad basin, Iran. Hydrological Sciences Journal. 66(3):355-372.
Gregory, K. J. 2006. The human role in changing river channels. Geomorphology. 79:172–191.
Hanseok, J. and Adamowski, J. 2016. A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale. Agricultural Water Management. 171:89-107.
Jones, A. 2012. Human geography: The basics. Routledge: Taylor and Francis, tandfonline.com, New York, NY, 224 p.
Kandasamy, J., Sounthararajah, D., Sivabalan, P., Chanan, A., Vigneswaran, S. and Sivapalan, M. 2014. Socio-hydrologic drivers of the pendulum swing between agricultural development and environmental health: a case study from Murrumbidgee River basin, Australia. Hydrology and Earth System Sciences. 18:1027-1041.
Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., Henriksen, H. J., Kuikka, S., Maier, H. R., Rizzoli, A. E., van Delden, H. and Voinov, A. A. 2013. Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling and Software. 47:159-181.
Liu, D., Tian, F., Lin, M. and Sivapalan, M .2015a. A conceptual sociohydrological model of the co-evolution of humans and water: case study of the Tarim River basin, western China. Hydrology and Earth System Sciences. 19:1035-1054.
Liu, H., Benoit, G., Liu, T., Liu, Y. and Guo, H. 2015b. An integrated system dynamics model developed for managing lake water quality at the watershed scale. Journal of Environmental Management. 155:11–23.
Liu, J. G., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L., Schneider, S. H. and Taylor, W.W. 2007b. Complexity of coupled human and natural systems. Science. 317:1513–1516.
Liu, J., Dietz, T., Carpenter, S. R., Folke, C., Alberti, M., Redman, C. L., Schneider, S. H., Ostrom, E., Pell, A. N., Lubchenco, J., Taylor, W. W., Ouyang, Z., Deadman, P., Kratz ,T. and Provencher, W. 2007a. Coupled human and natural systems. Ambio. 36:639–649.
Liu, Y., Gupta, H., Springer, E. and Wagener, T. 2008. Linking science with environmental decision making: experiences from an integrated modeling approach to supporting sustainable water resources management. Environmental Modelling and Software. 23:846-858.
Madani, K. 2014. Water management in Iran: what is causing the looming crisis?. Journal of Environmental Studies and Sciences. 4(4):315-328.
Marsh, G. P. 1864. Man and Nature. Belknap Press of Harvard University Press, Cambridge, MA, 504 p.
Mirchi, A., Madani, K., Watkins, Jr. D. and Ahmad, S. 2012. Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resources Management. 26:2421–2442.
Molle, F. 2003. Development trajectories of river basins: a conceptual framework,  Research Report, International Water Management Institute, 72, Colombo, Sri Lanka.
Odhiambo, N. M. 2008. Financial Depth, Savings and Economic Growth in Kenya: A Dynamic Causal Linkage. Economic Modelling. 25(4):704–713.
Odum, E. P. 1989. Ecology and our endangered life-support systems. Sinauer Associates, Massachusetts, 283 p.
Pande, S. and Savenije, H. H. G. 2016. A sociohydrological model for smallholder farmers in Maharashtra, India. Water Resources Research. 52:1923-1947.
Qin, H., Zheng, C., Xin, H. and Refsgaard, J. C. 2019. Analysis of Water Management Scenarios Using Coupled Hydrological and System Dynamics Modeling. Water Resources Management. 33:  4849–4863.
Randers, J. 1980. Guidelines for model conceptualization. In: Randers J (ed) Elements of the system dynamics method. MIT Press: Cambridge, Massachusetts, pp 117–139.
Richmond, B. 1993. Systems thinking: critical thinking skills for the 1990ies and beyond. System Dynamics Review. 9(2):113–133.
Richmond, B. 1994. Systems thinking/system dynamics: let’s just get on with it. System Dynamics Review. 10(2/3):135–157.
Roobavannan, M., Kandasamy, J., Pande, S., Vigneswaran, S. and Sivapalan, M. 2017. Role of Sectoral Transformation in the Evolution of Water Management Norms in Agricultural Catchments: A Sociohydrologic Modeling Analysis. Water Resources Research. 53:8344–8365.
Saeed, K. 1998. Defining a problem or constructing a reference mode. In: Proceedings of the 16th International Conference of the System Dynamics Society Quebec ’98, Quebec City, Canada.
Sawada, Y. and Hanazaki, R. 2020. Socio-hydrological data assimilation: analyzing human–flood interactions by model–data integration. Hydrology and Earth System Sciences. 24(10):  4777–4791.
Senge, P. 1990. The Fifth Discipline: the art & practice of the learning organization. Doubleday/Currency, New York, 412 p.
Sherrieb, K., Norris, F. H. and Galea, S. 2010. Measuring Capacities for Community Resilience. Social Indicators Research. 99:227–247.
Simane, B., Zaitchik, B. F. and Mesfin, D. 2012. Building Climate Resilience in the Blue Nile/Abay Highlands: A Framework for Action. International Journal of Environmental Research and Public Health. 9:435–461.
Simonovic, S. P. 2009. Managing water resources: methods and tools for a systems approach. UNESCO, Paris and Earthscan James & James, London, 680 p.
Sivapalan, M. and Bloschl, G. 2015. Time scale interactions and the coevolution of humans and water. Water Resources Research. 51:6988–7022.
Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., Wescoat, J. L. and Rodríguez-Iturbe, I. 2014. Sociohydrology: Use inspired water sustainability science for the Anthropocene. Earth’s Future. 2:225–230.
Sivapalan, M., Savenije, H. H. G. and Blöschl, G. 2012. Sociohydrology: A new science of people and water. Hydrology and Earth System Sciences. 26:1270-1276.
Smith, J., Moore, R., Anderson, D. and Siderelis, C. 2012. Community Resilience in Southern Appalachia: A Theoretical Framework and Three Case Studies. Human Ecology. 40:341–353.
Srinivasan, V. 2015. Reimagining the past – use of counterfactual trajectories in socio-hydrological modelling: the case of Chennai, India. Hydrology and Earth System Sciences. 19:785–801.
Stave, K. A. 2003. A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. Environmental Management. 67(4):303–313.
Sterman, J. D. 2000. Business dynamics, systems thinking and modeling for a complex world. McGraw-Hill, Boston, 1008p.
Thomas, Jr. W. L. 1956. Man’s Role in Changing the Face of the Earth. University of Chicago Press, Chicago, USA, 1236 p.
Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky C, Pulsipher, A. and Schiller, A. 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America. 100:8074–8079.
Vörösmarty, C. J., Pahl-Wostl, C. and Bhaduri, A. 2013a. Water in the anthropocene: New perspectives for global sustainability. Current Opinion in Environmental Sustainability. 5(6):535–538.
Vörösmarty, C. J., Pahl-Wostl, C., Bunn, S. E. and Lawford, R. 2013b. Global water, the anthropocene and the transformation of a science. Current Opinion in Environmental Sustainability. 5(6):539–550.
Walker, K. and Thoms, M. 1993. Environmental effects of flow regulation on the lower River Murray, Australia. Regulated Rivers Research & Management. 8:103–119.
Wolstenholme, E. F. 2003. Towards the definition and use of a core set of archetypal structures in system dynamics. System Dynamics Review. 19(1):7–26.
Xu, L., Gober, P., Wheater, H. S. and Kajikawa, Y. 2018. Reframing socio-hydrological research to include a social science perspective. Journal of Hydrology. 563:76–83.
Xu, Z. X., Takeuchi, K., Ishidaira, H. and Qhang, X. W. 2002. Sustainability analysis for Yellow River water resources using the system dynamics approach. Water Resources Management. 16(3):239–261.
 
 
دوره 16، شماره 3 - شماره پیاپی 93
مرداد و شهریور 1401
صفحه 512-536
  • تاریخ دریافت: 15 بهمن 1400
  • تاریخ بازنگری: 19 اسفند 1400
  • تاریخ پذیرش: 11 اردیبهشت 1401
  • تاریخ اولین انتشار: 11 اردیبهشت 1401