The effect of pipe viscoelasticity on the optimal design of pressurized irrigation network under water hammer conditions (Case study of Ismail Abad Lorestan pressurized irrigation network)

Document Type : Original Article

Authors

1 PhD Student, Department of Water Engineering, Faculty of Agriculture, Razi University of Kermanshah, Kermanshah, Iran

2 Associate professor, Department of water Engineering, Razi University, Kermanshah., Iran

3 Razi university

Abstract

The present study focuses on the effect of viscoelastic properties on the optimal design of pressurized irrigation system taking into account the impact of water hammer. For this purpose, the three models, the optimizer, the hydraulic steady solver (HSS), and hydraulic transient solver (HTS) were coded together in the form of a computer model. In the optimizer model, the initial population is created from the available diameters. Then, for each member of this population, in the HSS, the values of pressure in the nodes and velocity in the pipes are calculated. These values are sent to HTS as an initial condition. In the HTS, by applying a water hammer condition on the system, the maximum overpressure in each node is calculated and the results are sent to the optimizer model. Here the value of the objective function is calculated by observing the constraints for each member of the initial population and relative compatibility is obtained for all members. By applying the operation of mutation, intersection, replacement with the elitist approach, the next generation is finally calculated and the mentioned steps are repeated until the condition of stopping the calculations and determining the optimal answer is reached. Validation of the HTS in viscoelastic pipes using data measured at the Imperial College (London, UK) and considering three Kelvin–Voigt elements and retardation times of 0.05, 1.5 and 5 seconds for these three elements are done. The results showed that for wave speed of 390 m / s, the measured pressure fluctuations are in good agreement with the calculations. After confirming the model results, water hammer simulation of Ismailabad network in the current situation, which is composed of GRP and HDPE pipes, was performed with and without considering the viscoelastic properties for polyethylene pipes.

Keywords


البرزی ،م. 1388. کتاب الگوریتم ژنتیک. انتشارات علمی دانشگاه صنعتی شریف.
شاهی نژاد،ب. 1390. طراحی بهینه سیستم‌های انتقال و توزیع شبکه‌های تحت‌فشار با استفاده از برنامه‌ریزی خطی مختلط اعداد حقیقی و صحیح. رساله دکتری سازه‌های آبی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
قبادیان، ر.، حاضری، آ. و فاطمی، ا. 1397. بهینه‌سازی قطر لوله‌های شبکه آبیاری تحت‌فشار با استفاده از جستجوی ژنتیکی اعداد صحیح (مطالعه موردی: شبکه اسماعیل‌آباد لرستان). نشریه پژوهش‌های حفاظت آب‌وخاک. 25(4):207-224.
قبادیان، ر.، حاضری، آ. و فاطمی، ا. 1397. بررسی عددی تأثیر ضربه قوچ بر طراحی بهینه‌ی سیستم آبیاری تحت‌فشار. مجله تحقیقات منابع آب ایران. 14(2):47-61
Ahmadi, A. and Keramat, A. 2010. Investigation of fluid–structure interaction with various types of junction coupling. Journal of fluids and structures. 26 (7-8):1123-1141.
Chaker, M. A. and Triki, A. 2020. Investigating the branching redesign strategy for surge control in pressurized steel piping systems. International Journal of Pressure Vessels and Piping. 180:104044.
Covas, D., Stoianov, I., Mano, J. F., Ramos, H., Graham, N. and Maksimovic, C. 2005. The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—Model development, calibration and verification. Journal of Hydraulic Research. 43 (1):56-70.
Covas, D., Stoianov, I., Mano, J. F., Ramos, H., Graham, N. and Maksimovic, C. 2004. The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I—Experimental analysis and creep characterization. Journal of Hydraulic Research. 42 (5):517-532.
Cruz, D. and Pinho, F. 2007. Fully-developed pipe and planar flows of multimode viscoelastic fluids. Journal of non-newtonian fluid mechanics. 141 (2-3):85-98.
Cruz, D., Pinho, F. and Resende, P. 2004. Modelling the new stress for improved drag reduction predictions of viscoelastic pipe flow. Journal of non-newtonian fluid mechanics. 121 (2-3):127-141.
Engel, A. J. 2017. Development of cardiac atrial kick shear wave elastography to assess myocardial stiffness, The University of Nebraska-Lincoln.
Keramat, A., Kolahi, A. G. and Ahmadi, A. 2013. Waterhammer modelling of viscoelastic pipes with a time-dependent Poisson's ratio. Journal of fluids and structures. 43:164-178.
Mansour, H., Safwat, M., Djebedjian, B. and Tawfik, M. 2013. SIMULATION OF WATER HAMMER IN VISCOELASTIC PIPES. Mansoura Engineering Journal. 9:38.
Mostafa, N. H. 2014. Effect of a viscoelastic foundation on the dynamic stability of a fluid conveying pipe. International Journal of Applied Science and Engineering. 12 (1):59-74.
Phan‐Thien, N. 1978. A nonlinear network viscoelastic model. Journal of Rheology. 22 (3):259-283.
Soares, A. K., Covas, D. and Reis, L. F. 2008. Analysis of PVC pipe-wall viscoelasticity during water hammer. Journal of Hydraulic Engineering 134. (9):1389-1394.
Triki, A. and Chaker, M. A. 2019. Compound technique-based inline design strategy for water-hammer control in steel pressurized-piping systems. International Journal of Pressure Vessels and Piping. 169:188-203.
Triki, A. and Fersi,M. 2018. Further investigation on the water-hammer control branching strategy in pressurized steel-piping systems. International Journal of Pressure Vessels and Piping. 165:135-144.
Zanganeh, R. and Ahmadi, A. 2013. Axial vibration of a rod with viscoelastic support. Journal of Solid and Fluid Mechanics. 3 (1):67-79.