Investigation of the discharge rate of lateral sliding gates in both free and submerged positions and comparison with the lateral orifice in the Laboratory

Document Type : Original Article

Authors

1 Ph.D. Candidate, Department of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Islamic Azad University Ahwaz, Ahwaz, Iran.

2 Shahid Bahonar, Technical and Engineering College

3 Department of hydraulic structures

Abstract

Sliding valves are among the hydraulic structures that have many applications in irrigation and drainage and dam networks. Their most important application is to increase the water level in order to drain the upstream canals and increase the height of the dam weir in order to store more water and also to measure the flow discharge. Many researches have been done to determine the flow coefficient (Cd) of these valves, all of which have been for valves perpendicular to the channel axis. In this research, the data of the hydraulic model of the side sliding gate of the sharp edge of the hydraulic laboratory of the Faculty of Civil Engineering, Rourke University of India have been used, which includes 121 laboratory data related to the free flow regime with three valve width to flume width ratios of 0.60, 0.83 , 1.00 and the flow discharge is 25 to 120 liters per second and 80 laboratory data are related to the submerged flow regime with a ratio of valve width to flume width of 1 meter and flow range of 25 to 85 liters per second. Laboratory data include flow rates Q, water depth before valve y1, flow depth at the bottom yt and opening of valve a. Using the analytical method and dimensionless number a / y1, the critical depth value under the sliding valve ycs For free flow regime and immersion coefficient  For submerged flow regime, the amount of flow discharge was calculated directly. The results of validation of the extracted relationships show that the use of the critical depth parameter in determining the amount of flow discharge has a high accuracy.

Keywords


اسماعیل‌زاده، م.، حیدر پور، م. و قاسمی، م. 1390. بررسی خصوصیات جریان در حضور یک دریچه کشویی جانبی. اولین کنفرانس بین‌المللی و سومین کنفرانس ملی سد و نیروگاه‌های برق‌آبی. تهران. ایران. 1-7.
الله دادی، ک.، انصاری قوجقار، م.، زینعلی، م،. پارسی، ا. 1400. پیش­بینی ضریب دبی سرریز کلید پیانو قوسی با مقطع ذوزنقه­ای. تحقیقات آب و خاک ایران. 52 (1): 95-107.
برقی خضرلو، ا.، خلیلی شایان، ح.، فرهودی، ج. و وطن‌خواه ع. 1395. توسعه روشی نوین جهت تخمین ضریب دبی دریچه‌های کشویی در شرایط جریان آزاد و مستغرق. دانش آب و خاک. 26 (4): 207-221.
پارسی، ا.، الله دادی، ک.، بهره بر، ا.، فرهادی، رسول. 1400. اثر تنگ شدگی پایین دست بر روی دبی سرریز جانبی. آبیاری و زهکشی ایران. 15 (2): 455-466.
پارسی، ا.، زینعلی، م.، الله دادی، ک.، انصاری قوجقار، م. 1399. پیش‌بینی دبی عبوری سرریزهای زیگزاگی قوسی با مقطع ذوزنقه‌ای. هیدرولیک. 15 (4): 65-79.
فیض اله، ف.، قدسیان، م. و دهقانی، ا. 1385. بررسی آزمایشگاهی بروی ضریب تخلیه جریان همزمان دریچه و سرریز جانبی در خم 180 درجه. هفتمین سمینار بین‌المللی مهندسی رودخانه. اهواز. ایران. 1-8.
قویدل، م.، کوچک­زاده، ص،. بی­جن­خان، م. 1397. مدل‌سازی عددی جریان عبوری از دریچه‌های کشویی در تمام دامنه استغراق. تحقیقات آب و خاک ایران. 14 (3): 583-596.
Bijankhan, M. and Kouchakzadeh, S. 2014. Free hydraulic jump due to parallel jets. Journal of Irrigation and Drainage Engineering ASCE. 141(2): 04014041-04014049.
Bijankhan, M. and Kouchakzadeh, S. 2015. The hydraulics of parallel sluice gates under low flow delivery condition. Journal of Flow Measurement and Instrumentation. 41: 140-148.
Bijankhan, M. and Ferro, V. 2018. Experimental Study and Numerical Simulation of Inclined Rectangular Weirs. Journal of Irrigation and Drainage Engineering. 144(7): 04018012.
Castro-Orgaz, O. and Hager, W.H. 2014. Transitional flow at the standard sluice gate. Journal of Hydraulic Research. 52(2): 264–273.
Ferro, V. 2000. Simultaneous Flow Over and Under a Gate. J. Irrig. Drain Eng. 126:190-193.
Ghodsian, M. 2003.  Flow through side sluice gates. Journal of Irrigation and Drainage Engineering ASCE.  129(6):458–63.
Khalili Shayan, H. and Farhoudi, J. 2013. Effective parameters for calculating discharge coefficient of sluice gates. Journal of Flow Measurement and Instrumentation. 33: 96-105.
Kubrak, E., Kubrak, J., Kiczko, A., & Kubrak, M. 2020. Flow Measurements Using a Sluice Gate; Analysis of Applicability. Water. 12(3): 819.
Ojha, C. S. P. and Subbaiah, D. 1997. Analysis of flow through lateral slot. Journal of Irrigation and Drainage Engineering. 123(5): 402-405.
Panda, S. 1981. Characteristics of side sluice flow. ME Thesis, Univ. of Roorkee, Roorke, India.  
Sauida, F. S. 2014. Calibration of submerged multi-sluice gates. Alexandria Engineering Journal. 53(3): 663-668.
Shahrokhnia, M. A. and Javan, M. 2006. Dimensionless Stage–Discharge Relationship in Radial Gates. J. Irrig. Drain Eng. 132:180-184.Stefano, C. D. and Ferro, V. 2016. Closure to “Stage–Discharge Relationship for an Upstream Inclined Grid with Transversal Bars” by C. Di Stefano and V. Ferro. J. Irrig. Drain Eng. 142(8): 07016008.
Stefano, C. D. and Ferro, V. Bijankhan, M. 2018. Discussion of “Extraction of the Flow Rate Equation under Free and Submerged Flow Conditions in Pivot Weirs with Different Side Contractions” by N. Sheikh Rezazadeh Nikou, M. J. Monem, and K. Safavi. J. Irrig. Drain Eng. 144(4): 07018007.
Swamee, P.K., Pathak, S.K., Mansoor, T., Ojha, C.S.P. 2000. Discharge characteristics of skew sluice gates. Journal of Irrigation and Drainage Engineering ASCE. 129:458-463.
Tanwar, M. P. S. 1984. Flow through side sluice.  M.E. Thesis, Univ. of Roorkee, Roorkee, India.
Wu, S., & Rajaratnam, N. 2015. Solutions to rectangular sluice gate flow problems. Journal of Irrigation and Drainage Engineering. 141(12): 06015003.
Zhu, Y.M., Lu, X.X., Zhou, Y. 2007. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology. 84(4): 111-125.