بهبود برآورد تبخیر-تعرق پتانسیل با استفاده از ضریب اصلاحی به کمک مدل درخت تصمیم M5

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استادیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی، گرگان، ایران

چکیده

تبخیر و تعرق از اساسی­ترین اجزای چرخه­ی هیدرولوژی است که تعیین صحیح آن در علوم آب از قبیل مطالعات توازن هیدرولوژیکی، طراحی و مدیریت سیستم­های آبیاری از اهمیت بالایی برخوردار است. پژوهش حاضر امکان بهبود دقت برآورد تبخیر-تعرق به روش هارگریوز-سامانی را بر اساس ضریب اصلاحی k بررسی می‌کند. این ضریب که نسبت برآورد تبخیر-تعرق با دو روش فائو پنمن-مانتیت (F-P-M) و هارگریوز-سامانی می‌باشد بر اساس متغیرهای هواشناسی مانند دمای هوا، رطوبت نسبی و دمای نقطه شبنم با استفاده از مدل درختی M5 و شبکه عصبی مصنوعی در سه ایستگاه هواشناسی آستارا، بندر انزلی و رشت برآورد گردید. برای انجام این کار، یک دوره آماری 30 ساله (1360-1390) در نظر گرفته شد و داده‌ها برای هر ایستگاه بر اساس نسبت 80 به 20 درصد به داده‌های آموزش و آزمون تقسیم‌بندی شدند. سپس مقدار k محاسبه شده در تبخیر-تعرق برآورد شده به روش هارگریوز سامانی ضرب شد. نتایج نشان دادکه مدل درختی M5 نسبت به شبکه عصبی مقدار k را بهتر برآورد می‌کند و با این روش میانگین اختلاف بین مقدار برآورد شده به روش هارگریوز-سامانی و پنمن-مانتیث به ترتیب برای ایستگاه‌های آستارا، بندرانزلی و رشت از 41/0، 55/0 و 7/0 به 31/0، 38/0 و 28/0 کاهش می‌‌یابد. 

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of the Estimation of Potential Evapotranspiration Using Adjusted Coefficient by M5 Decision Tree Model

نویسندگان [English]

  • Hossein Sharifan 1
  • Khalil Ghorbani 2
1 Associate professor of Water Engineering Department, water and soil Engineering College, Gorgan Agriculture Science and Natural Resource University.., Gorgan., Iran
2 Assistant professor of Water Engineering Department, water and soil Engineering College, Gorgan Agriculture Science and Natural Resource University., Gorgan., Iran
چکیده [English]

Evapotranspiration is one of the basic components in hydrologic balance that is important for the design and management of irrigation systems. This research investigates improvement of accuracy of ET estimation by H-S method based on adjusted coefficient of K. This coefficient, the ratio of evapotranspiration estimated by F-P-M method to that estimated by H-M method, is determined by M5 Decision Tree Model based on meteorological variables (air temperature, relative humidity, dew point) at three meteorological stations (including Astara, Rasht, Bandar-Anzali). Thirty years period (1360-1390) is used for this research. The data of each station is divided into two parts: eighty percent for training and twenty percent for validation. The estimated adjusted coefficient is multiplied by estimated evapotranspiration with H-S method. The results indicate higher performance of M5 Decision Tree Model relative to Neural Network model. In addition, mean difference between estimated evapotranspiration by two methods decreased from 0.41, 0.55, 0.7 to 0.31, 0.38, 0.28 for Astara, Bandar-Anzali and Rasht stations, respectively

کلیدواژه‌ها [English]

  • evapotranspiration
  • correction Index
  • Neural Network
  • method tree M5
رحیمی خوب، ع.، بهبهانی، س. م. ر. و نظری­فر، م. 1385. بررسی استفاده از حداقل داده­های هواشناسی در معادله پنمن- مانتیث (مطالعه موردی: استان خوزستان). مجله علمی پژوهشی علوم کشاورزی. 3. ص:591-560.
سامتی،م.، قهرمان،ن.، قربانی،خ.1390. کاربرد مدل داده کاوی M5 در پیش­بینی تبخیر-تعرق پتانسیل (مطالعه موردی: ایستگاه شیراز)- اولین کنفرانس ملی هواشناسی و مدیریت آب کشاورزی، کرج، ایران.
شایان نژاد،م. 1385. مقایسه­ی دقت روش­های شبکه­های عصبی مصنوعی و پنمن - مانتیث در محاسبه تبخیر-تعرق پتانسیل. همایش ملی مدیریت شبکه­های آبیاری و زهکشی. اهواز، ایران
فرشی،ع.ا،م.ر. شریفی،ر. جاراللهی،م.ر.  قائمی،م. شهابی‏فر،م. تولائی،م. 1376. برآورد آب مورد نیاز گیاهان عمده زراعی و باغی کشور (جلد اول گیاهان زراعی). وزارت کشاورزی، سازمان تات، موسسه تحقیقات خاک و آب، نشر آموزش کشاورزی، کرج.
Ahmad,S., Simonovic,S.P. 2005.Anartificial neural network model for generating hydrograph from hydro–meteorological parameters. Journal of hydrology, (315), 236-251.
Allen,G.R., Pereira,S.L., Raes,D and Smith,M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirement. FAO Irrigation  and Drainage Paper 56, Rome, Italy.
Bruton,J.M., McClendon,R.W., Hoogenboom, G. 2000. Estimating daily pan evaporation with artificial neural networks. Trans. ASAE., ASAE 43 (2), 491–496.
Dayhoff,J.E. 1990. Neural Network Principles, Prentice-Hall International, U.S.A
Diamantopoulou,M.J., Georgiou.P.E and Papamichial,D.M. 2010. Performance evaluation of artificial neural networks in estimating reference evapotranspiration with minimal meteorological data. Global nest Journal.
Hargreaves,G.H. 1994. Defining and using reference evapotranspiration. Journal of Irrigation and Drainage Engineering, 120(6): 1132-1139.
Jain,S.K., Nayak.P.C., Sudheer.K.P. 2008 Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation, Hydrological Processes,  22(13).
Jensen,M.E., Burman,R.D and Allen,R.G. 1990. Evapotranspiration and Irrigation Water Requirement.  ASCE Manual, No.70, U.S.A.
Jensen,D.T., Hargreaves,G.H., Temesgen,B., and Allen,R.G. 1997. Computation of ET0 under non-ideal conditions. J. Irrig. Drain. Eng., ASCE, 123(5): 394-400.
Keskin,M.E., Terzi,O. 2006. Artificial neural networks models of daily pan evaporation. J. Hydrol. Eng., ASCE 11 (1): 65– 70.
Ozgur kisi. 2007.odeling monthly evaporation using two different neural computing techniquesIrrigation Science Volume 27(5): 417-430
Pal,M., Deswal,S. 2009. M5 model tree based modeling of reference  evapotranspiration. Hydrol. Process. 23:1437-1443.
Quinlan,J.R. 1992. Learning with continuous classes. Proceedings of Fifth Australian joint conference on artificial intelligence, Singapore, pp: 343–348.
Slavisa Trajkovic 2009.Comparison of radial basis function networks and empirical equations for converting from pan evaporation to reference evapotranspiration Hydrological Processes, 23(6): 874 – 880.
Witten,I.H and Frank,E. 2005. Data mining: practical machine learning tools and techniques with Java implementations. Morgan Kaufmann:San Francisco, p: 664.