طراحی و ساخت دستگاه اندازه‌گیری داده‌های محیطی خاک به ویژه رطوبت، دما و شوری با نام تجاری REC-P55

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانش آموخته کارشناسی علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در دهه‌های آتی، عمده کشور‌های جهان به جهت رشد لجام گسیخته جمعیت و نیاز بیش­تر به تولیدات کشاورزی و نیز رشد سریع سطح استاندارد زندگی در کشورهای در حال توسعه و جهان سوم و به تبع آن رشد نیاز به محصولات صنعتی و کشاورزی، با بحران شدید آب مواجه خواهند شد. بنابراین استفاده مطلوب و بهینه از منابع آب از یک سو و از سوی دیگر افزایش سطح تولیدات کشاورزی و افزایش بهره­وری در کشاورزی امری ضروری و اجتناب­ناپذیر خواهد بود. در این ارتباط، طراحی و ساخت دستگاه اندازه‌گیری رطوبت و دمای خاک و نیز تعیین عصاره اشباع خاک به طور همزمان مدنظر قرار گرفت که نهایتاً تلاش سه ساله و ارتقای سطح کیفی سنسورها و دیتالاگر ساخته شده، این امر را در سال 1391 میسر ساخت. کاربرد دستگاه اندازه‌گیری داده‌های محیطی مذکور با نام تجاری REC-P55، در آزمایش‌های میدانی نشان داد که این دستگاه می‌تواند با دقت 05/0 درصد و صحت 5/0 درصد در خاک­های با بافت‌ متفاوت و نیز در اعماق مختلف داده­های رطوبت وزنی خاک را ثبت نماید. به طوری که مقایسه رطوبت ثبت شده توسط دستگاه و روش وزنی دارای همبستگی حدود 99% بود. هم­چنین با عنایت به قابلیت‌های دستگاه، مشخص شد که امکان ایجاد پروفیل‌ رطوبتی خاک به راحتی با این دستگاه وجود دارد و دستگاه در مقایسه با بلوک‌های گچی و دستگاه PR2 نتایج دقیق‌تری را بدست می‌دهد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Design and Construction of REC-P55 for Reading of Soil Moisture, temperature and Salinity

نویسندگان [English]

  • Hossein Ansari 1
  • Mohammad Hassanpour 2
1 Associate Professor of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad ., Mashhad., Iran
2 Under Graduated of Water Engineering and Science Department, College of Agriculture, Ferdowsi University of Mashhad (FUM)., Mashhad., Iran
چکیده [English]

In the next decades, rapid population growth, increasing demand of agricultural yield and the standard living especially in the developing countries will significantly reduce water availability for agriculture. Therefore, desirable and optimal use of water resources and increasing agricultural productivity are vital. So, in this research, newly developed sensor has been designed and constructed for determining and monitoring real-time temperature, salinity and water content, with three years efforts from 1390. Environmental data measurement system using the brand REC-P55 in the field experiments showed that this system can record moisture content with accuracy less than 0.05% and validity less than 0.5% in different soil textures and depths. Moreover, the correlation coefficient for actual recorded data and REC-P55 one is 99%. Also, according to the capabilities of REC-P55, it was found that soil moisture profiles can be easily created and the results are of a high precision in comparison with the electrical resistance sensor and PR2.

کلیدواژه‌ها [English]

  • soil moisture
  • irrigation
  • Temperature
  • Salinity
  • Measurement

قنادزاده،م.ع.، داوری،ک و قهرمان،ب. 1387. ارزیابی ساختمان­های مختلف بلوک گچی برای تعیین رطوبت خاک. مجله پژوهش آب ایران.3 .2: 32-23.

Adamchuk,V.I., Hummel,J.W., Morgan,M.T and Upadhyaya,S.K. 2004. On-the-go soil sensors for precision agriculture. Comput. Electron. Agriculture. 44: 71-91.

Aggellids,S M and Londra,P.A. 1998. Comparison of empirical equations for temperature correction of gypsum sensors. Agronomy journal. 90: 441-443 .

Andrade,P and Upadhayaya,S.K., Aguera,J and Jenkins, B.M. 2004. Evaluation of a capacitance-based soil moisture sensor for real-time applications. Transactions of the ASAE. 47: 1281-1287.

Baumhardt,R.L., Lascano,R.J and Evett,S.R. 2000. Soil material, temperature, and salinity effects on calibration of multisensor capacitance probes. Soil Science. Society. Amiicran Journal. 64: 1940–1946.

Bourget,S.J., Elrick,D.E and Tanner,C.B. 1958. Electrical resistance units for moisture measurements: Their moisture hysteresis, uniformity and sensitivity. Soil Science. 86:298–304.

Bouyoucos,G.J and Mick,A.H. 1940. An electrical resistance method for the continuous measurement of soil moisture under fi eld conditions. Bull. 172. Michigan Agric. Exp. Stn., East Lansing. Physical and mineralogical methods. 2nd ed. SSSA Book Ser. 5. SSSA, Madison, WI.

Campbell,G.S and Gee,G.W. 1986. Water potential: Miscellaneous methods. P. 619–633. In A. Klute (editor.) Methods of soil analysis. Part 1.

Campbell,G.S. 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Science. 117: 311–314.

Campbell,C.S. 2002. Response of ECH2O Soil Moisture Sensor to Temperature Variation in Water Content, Soil Type and Solution Electrical Conductivity. Decagon Devices, Inc. 950 NE Nelson Court Pullman, WA 99163 USA.

Cassel,D.K., Kachanoski,R.G and Topp,G.C. 1994. Practical consideration for using a TDR cable tester. Soil Technology. 7: 113-126.

Chung,S.O., Kenneth,A.S and Jinglu,T. 2005. Variability structure of on-the-go soil strength sensor data. Paper No. 051039. ASAE St. Joseph, MI.: USA.

Coleman,E.A and Hendrix,T.M. 1949. The fiberglass electrical soil- moisture instrument. Soil Science. 67:425–438.

Erbach,D.C. 1983. Measurement of soil moisture and bulk density. ASAE Paper No. 83-1553.

Evett,S.R., Laurent,J.R., Cepuder,p and Hignett,C. 2002. Neutron scattering, Capacitance, and TDR soil water content measurements compared on four continents.17th WCSS.14-21.

Evett,S.R., Tolk,J.A and Howel,T.A. 2006. Soil profile water content determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and precision. Vadose Zone Journal.5:894-907.

Evett,S.R., Howel,T.A and Tolk,S.A. 2007. Comparison of soil water sensing methods for irrigation management and research. Soil and water management research Unit. USDA, ARS-Bushland, TX.

Evett,S.R., Schwart,R.C., Tolk,J.A and Howell,T.A. 2009. Soil profile water content Determination: spatiotemporal variability of electromagnetic and neutron probe sensors in access tubes. Vadose Zone Journal.8:926-941.

Fares,A and Polyakov,V. 2006. Advances in crop water management using capacitive water sensors. In Sparks,D. (editor.) Advances in Agronomy. 90. Elsevier Science, USA. 43–77.

Fares,A., Hamdhani,H and Jenkins,D.M. 2007. Temperature-dependent scaled frequency: Improved accuracy of multisensor capacitance probes. Soil Science. Society. Amirican. Journal. 71: 894–900.

Flint,A.L., Campbell,G.S., Ellett,K.M and Calissendorff,C. 2002. Calibration and temperature correction of heat dissipation matric potential sensors. Soil Science. Society. Amirican. Journal. 66:1439–1445.

Food and Agriculture Organization of the United Nations (FAO). 1996. Proceedings of the World Food Summit, Vol. 2, Chapter 7, “Food production: the critical role of water.”  Technical background document,  November 13-17, 1996.  FAO Rome, Italy.

Gardner,W.H. 1986. Water content. In Klute,A. et al. (eds.) Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd Ed. ASA and SSSA, Madison. 493–544.

Greacen,E.L. 1981. Soil Water Assessment by the Neutron Method. CSIRO Melbourne, Australia.

McMichael,B and Lascano,R.J. 2003. Laboratory evaluation of a commercial dielectric soil water sensor. Vadose Zone J. 2: 650–654.

Hanks,R.J and Ashcroft,A. 1980.phsical properties of soils. Deptartment. soil science. USU, logan, Uta, USA.

Hayes,P.H and Tight,D.C. 1995. 'Applying electrical resistance blocks for unsaturated zone monitoring at arid sites', Handbook of Vadose Zone Characterization and Monitoring,L.G. Wilson,L.G. Everett and Cullen, S.J.  CRC Press, Inc, BocaRaton.

Leib,B.G.,  Hattendorf,M., Elliott,T and Mattews,G. 2002.  Adoption      and   adaptation   of     scientific irrigation scheduling: Trends from Washington, USA as of 1998. Agricultural Water   Management, 55, pp 105-120.

Mazahrih,N.T., Katbe-Bader,N., Evett,S.R., Ayars,J.E. and Trout,T. 2008. Field calibration Accuracy and utility of four down-hole water content sensors. Vadose Zone Journal.7:992-1000.

McCann,I.R., Stark,J.C and King,B.A. 1992. Evaluation and interpretation of the crop water stress index for well watered potatoes. American Potato Journal, 69:831-841.

Mead,R.M., Ayars,J.E and Liu,J. 1995. Evaluating the influence of soil texture, bulk density, and soil water salinity on a capacitance probe calibration. ASAE meeting, 18–23 June, ASAE Paper 95-3264. ASAE, St. Joseph, MI.

Mouazen,A.M., Baerdemaeker,J.D and Ramon,H. 2004. Towards development of on-line soil moisture content sensor using a fiber-type NIR spectrophotometer. Soil Till. Research. 80: 171-183.

Nadler,A and Lapid,Y. 1996. An improved capacitance sensor for in situ monitoring of soil moisture. Australian Journal of Soil Research, 34:361–368.

Newman,S.C and Hummel,J.W. 1999. Soil penetration resistance with moisture correction. Paper No. 99-3028. ASAE St. Joseph, MI.: USA.

Noborio,K., McInnes,K.J and Heilman,J. L. 1994. Field measurements of soil electrical conductivity and water content by time-domain reflectometry. Comput. Electron. Agriculture. 11: 131–142.

Noborio,K., Horton.R. and Tan,C.S. 1999. Time domain refl ectometry probe for simultaneous measurement of soil matric potential and water content. Soil Science. Society Amirican Journal. 63:1500–1505.

Or,D and Wraith,J.M. 1999. A new soil matric potential sensor based on time domain refl ectometry. Water Resource. Resarch. 35:3399–3407.

Pepin,S and Livingston,N.J. 1995. Temperature-dependent measurement errors in time domain reflectometry determinations of soil water. Soil Science Society Amirican Journal. 59: 38–43.

Perrier,E.R and Marsh,A.W. 1958. Performance characteristics of various electrical resistance units and gypsum materials. Soil Science Society Amirican Proceding. 22:140–147.

Robinson,M and Dean,T.J. 1993. Measurement of near surface soil water content using a capacitance probe. Hydrology. Process. 7.1: 77–86.

Seckler,D., Amarasingh,U., Molden,D., DeSilva,R and Barker,R. 1998. World Water Demand and Supply, 1990 to 2025: Scenarios and Issues. IIMI Research Report No. 19, International Irrigation Management Institute, Columbo, Sri Lanka.

Slaughter,D.C., Pellretier,M.G and Upadhyaya,S.K. 2001. Sensing soil moisture using NIR spectroscopy. Appliment. Engineering. Agriculture. 17: 241-247.

Spaans,E.J.A and Baker,J.M. 1992. Calibration of watermark soil moisture sensors for soil matric potential and temperature. Plant Soil. 143: 213–217.

Sun,Y.D.M., Lammers,P.S., Schmittmann,O and Rose,M. 2005.On-the-go measurement of soil water content and mechanical resistance by a combined horizontal penetrometer. Soil Till. Research. 86: 209-217.

Seyfried,M.S. 1993. Field calibration and monitoring of soil-water content with fiberglass electrical resistance sensors. Soil Science Society Amirican Journal. 57: 1432–1436.

Seyfried,M.S and Murdock,M.D. 2001. Response of new soil water sensor to variable soil, water content, and temperature. Soil Science Society Amirican. Journal 65: 28–34.

Thomas,A. 1966. In situ measurement of moisture in soil and similar Dobson, M.C., F.T. Ulaby, M.T. Hallikainen, and M.A. El-Rayes. substances by “fringe” capacitance. Journal of Science. Instrum. 43:21–27.

Thomson,S.J and Armstrong,C.F. 1987. Calibration of the  Watermark 200 soil moisture sensor. Appliment. Engeeniring Agricultrue. 3:186-189.

Topp,G.C., Davis,J.L and Annan,A.P. 1980. Electromagnetic determination of soil-water content measurements in coaxial transmission lines. Water Resource. Research. 16: 574–582.

Topp,G.C., Yanuka,M., Zebchuk,W.D  and Zegelin,S. 1988. Determination of electrical conductivity using time domain reflectometry: Soil and water experiments in coaxial lines. Water Resources Research. 24:945–952.

White,I., Knight,J.H., Zegelin,S.J and Topp,G.C. 1994. Comments on ‘Considerations on the use of Time-Domain Reflectometry (TDR) for measuring soilWater content’ by W. R. Whalley. Eur. Journal of Soil Science. 45: 503–508.

White,I, Zegelin,S.J. 1995. Electric and dielectric methods for monitoring soil-water content. In Handbook of Vadose Zone Characterization and Monitoring, Wilson LG, Everett LG, Cullen SJ (editors). Lewis: Ann Arbor; 343–385.

Xin,X.L., Xu,F.A., Zhang,J.B and Xu,M.X.  2007. A New Resistance Sensor for Monitoring Soil Matric Potential. Soil Science Society of America Journal, 71:866-871.