تأثیر تغییرات اقلیمی بر جریان ورودی به مخازن سدها در شرایط عدم قطعیت (مطالعه موردی: سدهای بوستان و گلستان در حوضه آبریز ﮔﺮﮔﺎﻧﺮود)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ﻣﻬﻨﺪﺳﻲ ﻋﻤﺮان آب و هیدرولیک، داﻧﺸﮕﺎه فردوسی مشهد، مشهد، ایران

2 داﻧﺸﻴﺎر ﮔﺮوه ﻣﻬﻨﺪﺳﻲ عمران ، داﻧﺸﮕﺎه فردوسی مشهد، مشهد، ایران

3 دانشیار داﻧﺸﻜﺪة ﻣﻬﻨﺪﺳﻲ عمران، داﻧﺸﮕﺎه تبریز، تبریز، ایران

چکیده

امروزه با افزایش جمعیت و پیشرفت تکنولوژی، استفاده بی­رویه از سوخت­های فسیلی موجب افزایش انتشار گازهای گلخانه­ای در اتمسفر شده است. افزایش غلظت این گازها، افزایش متوسط دما و به دنبال آن تغییرات اقلیمی را در پی خواهد داشت. تغییرات اقلیم نیز می‌تواند بر میزان بارندگی و رواناب تأثیر بسزایی داشته باشد که با توجه به محدودیت منابع آبی در کشور تأثیر مستقیم بر سیاست گذاری­های مدیرت آبی کشور خواهد داشت. در اﻳﻦ ﺗﺤﻘﻴﻖ، اﺛﺮ ﭘﺪﻳﺪة ﺗﻐﻴﻴﺮ اﻗﻠﻴﻢ ﺑﺮ میزان  آبدهی رودخانه ﮔﺮﮔﺎﻧﺮود در حوضه سدهای بوستان و گلستان در استان گلستان ﺑﺮرﺳﻲ ﺷﺪه اﺳﺖ. ﺑﺪﻳﻦ ﻣﻨﻈﻮر اﻃﻼﻋـﺎت خروجی مدل­های گردش عمومی جو ﺷﺎﻣﻞ ﻣﻘﺎدﻳﺮ دمای حداقل، دمای حداکثر، ساعت آفتابی و ﺑﺎرﻧﺪﮔﻲ، ﺑـﺮای دوره (1420-1393)، ﺗﺤـﺖ ﺳـﻨﺎرﻳﻮهای اﻧﺘـﺸﺎر با به­کارگیری یکی از مشهورترین مدل­های مولد داده­های تصادفی هواشناسی با رویکرد سری­ها (LARS-WG) رﻳﺰ ﻣﻘﻴﺎس ﺷﺪ. ﻧﺘﺎﻳﺞ در ﻣﺠﻤﻮع ﻧﺸﺎن­دﻫﻨـﺪه­ی ﻛـﺎﻫﺶ ﺣـﺪود 20 تا 25 درﺻﺪی ﺑـﺎرش و اﻓﺰاﻳﺶ 1 تا 2 درﺟﻪ ای ﺣﺮارت ﺳﺎﻟﻴﺎﻧﻪ اﺳﺖ. ﺑﺮای ﺑﺮرﺳﻲ ﺗﺄﺛﻴﺮ اﻳﻦ ﺗﻐﻴﻴﺮات ﺑﺮ ﺟﺮﻳﺎن رواﻧﺎب در ﺣﻮﺿـه­های این سدها از شبکه عصبی مصنوعی جهت مدلسازی رابطه بارش-رواناب اﺳﺘﻔﺎده ﺷﺪ و ﻣﻘﺎدﻳﺮ رواﻧﺎب ﺑﺮای دورة آﻣﺎری 1420-1393 ﭘﻴﺶﺑﻴﻨﻲ ﺷﺪ. ﻧﺘـﺎﻳﺞ ﻧﺸﺎن­دﻫﻨﺪه­ی ﻛﺎﻫﺶ رواﻧﺎب در ﺣﺪود 18 درﺻﺪ در حوضه سد بوستان و 24 درصد در حوضه سد گلستان، در دورة ﻣﺮﺑﻮط می‌باشد. با توجه به اینکه این کاهش عدد قابل توجهی است حوضه نیازمند اجرای سیاست­های سازگاری و بهبود در مدیریت منابع آب است.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Climate Changes on Inflow of Reservoires in the Uncertainty Condition (Case Study: Bostan and Golestan Dams in the Gorganroud Catchment)

نویسندگان [English]

  • Mohammad Noori 1
  • Mohammad Bagher Sharifi 2
  • Mehdi Zarghami 3
1 PhD Candidate, Department of Civil Engineering, Ferdowsi University., Mashhad., Iran
2 Associate professor, Department of Civil Engineering, Ferdowsi University., Mashhad., Iran
3 Associate professor, Faculty of Civil Engineering, University of Tabriz., Tabriz., Iran
چکیده [English]

Todays, with population increases and technology advances, excessive use of fossil fuels has increased greenhouse gases in the atmosphere. Increased concentrations of these gases in the atmosphere, lead to an increase in average temperature and consequently the climate change. Also, the climate change can affect the rainfall and runoff. With attention to limited water resources in Iran, the study of this impact is very important for water resources management. In this study, the effects of climate change on Gorganroud river runoff to the Boustan and Golestan reservoirs located in Golestan province of Iran is studied. The minimum temperatures, maximum temperature, hours of sunshine and precipitation are downscaled with LARS-WG model for the period of 2015 to 2040 and under different emission scenarios. The results show about 20 – 25% decrease in rainfall and an increase of about 1 - 2 centigrade degrees in annual temperature. To investigate the effect of these changes on the river runoff, Artificial Neural Network is used to model the relation between rainfall and runoff. And the amount of runoff between years 2015 to 2040 is predicted. The results show a reduction in runoff about 18% in inflo to the Boustan reservoir and 24% in inflo to the Golestan resrevoir catchment in next years. These results represents that the basin needs adapataion and mitigation policies for effective water resourecs management.

کلیدواژه‌ها [English]

  • Rainfall-Runoff
  • Climate change
  • Gorganroud Basin
  • Artificial Neural Network
  • LARS-WG model
حسینی،ف. 1387. اثرات تغییر اقلیم بر حوضه رودخانه کرخه. پایان نامه کارشناسی ارشد. دانشگاه صنعتی شریف. تهران.

کارآموز،م و عراقی نژاد،س. 1384. هیدرولوژی پیشرفته. انتشارات دانشگاه صنعتی امیرکبیر. تهران.

صمدی،ف.، مساح بوانی،ع و مهدوی،م. 1386. مطالعه اثر روش های ریزمقیاس نمایی رگرسیونی بر رژیم جریان رودخانه. کمیته ملی آبیاری و زهکشی ایران. تهران.

مدرسی،ف.، عراقی نژاد،س.، ابراهیمی،ک و خلقی،م. 1391. بررسی اثرات تغییر اقلیم بر آورد سالانه رودخانه. مجله آب و خاک. 25.6: 1365-1377.

مساح بوانی،ع و مرید،س. 1384. اثرات تغییر اقلیم بر رودخانه زاینده­رود. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک. 9.34: 17-27.

Abbaspour,K.C., Yang,J., Maximov,I., Siber,R., Bogner,K., Mieleitner,J., Zobrist,J and Srinivasan,R. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology. 333:413-430.

Chen, H., Chong, Y. X., & Shenglian, G. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology, 434-435, 36-45.

Eckhardt, K., Breuer, L. and Frede, H. G. (2003), "Parameter uncertainty and the significance of simulated land use change effects." Journal of Hydrology, 273, pp. 164-176.

Harpham, C., & Dawson, C. W. (2005). The effect of different basis functions on a radial basis function network for time series prediction: A comparative study. Neurocomputing, 69, 2161-2170.

Hu, Y., Maskey, S., & Uhlenbrook, S. (2013). Downscaling daily precipitation over the Yellow River source region in China: a comparison of three statistical downscaling methods. Theoretical and Applied Climatology (Springer), 112(3-4), 447-460.

IPCC. (2001). The Scientific Basis of Climate Change, Contribution of Working Grop I to the Third Assesment Report of the Intergovermental Panel on Climate Change (First ed., pp. 630). UK.: Cambridge University.

IPCC-TGCIA. (1999). Guidelines on the use of scenario data for climate impact and adaptation assessment. UK.: Intergovermental Panel on Climate Change.

Kalteh, A. M. (2008). Rainfall-Runoff modelling using artificial neural networks (ANNs): modelling and understanding. Caspian Journal of Environmental Sciences, 6(1), 53-58.

Lalozaee, A., Pahlavanravi, A., Bahreini, F., Ebrahimi, H., & Iezadi, H. (2013). Efficiency Comparison of IHACRES Model and Artificial Neural Networks (ANN) in Rainfall-Runoff Process Simulation in Kameh Watershed (A Case Study in Khorasan Province, NE Iran). International Journal of Agriculture: Research and Review, 3(4), 900-907.

Lettenmaier, D., McCabe, G., & Stakhivn, E. (1996). Global Climate Change: Effect on the Hydrologic Cycle: McGraw Hill.

Marce, R., Comerma, M., García, J. C. and Armengol, J. (2004), "A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under timevarying human impact." Limnology and Oceanography: Methods, 2, pp. 342-355.

Rajurkara, M. P., Kothyarib, U. C., & Chaube, U. C. (2004). Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology, 285, 96-113.

Riad, S.; Mania, J. Rainfall-runoff model using an artificial neural network approach s. Mathematical and Computer Modelling 2004, 40, 839-846.

Sailor, D. J., Hu, T., Li, X., & Rosen, J. N. (2000). A neural network approach to local downscaling of GCM output for assessing wind power implications of climate change. Renewable Energy, 19, 359-378.

Semenov, M. A. (2008). Simulation of extreme weather events by a stochastic weather generator. Climate Research, 35, 203-212.

Semenov, M. A., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research, 41, 1-14.

Solomon, S., Qin, D., Manning, M., & Marquis, M. (2007). The Physical Science Basis Contribution of Working Group I to the fourth assessment report of the Intergovermental Panel on Climate Change. United Kingdom and USA: Cambridge University Press.

Sunyer, M. A., Madsen, H., & Ang, P. H. (2012). A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmospheric Research, 103, 119-128.

Tokar, A., Sezin, & Johnson. (1999). Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4(3), 232-239.

Wang, Y. M., Traore, S., Kerh, T., & Leu, J. M. (2011). Modelling reference evapotranspiration using feed forward back propagation algorithm in arid regions of Africa. Irrigation and Drainage, 60, 404-417.

Wilby, R. L., & Harris, I. (2006). A framework for assessing uncertainties in climate change impacts: low flow scenarios for the River Thames. Water Resources Research, 42, W02419.

Wilby, R. L., Troni, J., Biot, Y., Tedd, L., Hewitson, B. C., Smith, D. M., & Sutton, R. T. (2009). A review of climate risk information for adaptation and development planning. International Journal of Climatology, 29(9), 1193-1215.

Zarghami, M., Abdi, A., Babaeian, I., Hassanzadeh, Y., & Kanani, R. (2011). Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change, 78, 137-146.