Uncertainty Analysis of Artificial Neural Networks in Simulation of Saturated Hydraulic Conductivity Using Monte-Carlo Simulation

Document Type : Original Article


1 Assistant Professor of Water Engineering Department., University of Birjand.,Birjand., Iran

2 Assistant Professor of Water Engineering Department., University of Birjand., Birjand., Iran


Hydraulic conductibility as a key soil property is essential for irrigation management purposes and plays an important role in understanding site-specific unsaturated water flow and transport processes. Since it cannot often be measured because of practical and/or cost-related reasons, data driven models such as artificial neural network may be applied for prediction of soil hydraulic properties. This paper aimed to assess uncertainty analysis in neural network prediction originated from different weights due to different training data sets. Here, we present a unique dataset that consists of 151 samples collected from arable land around Bojnourd City, containing of sand, silt and clay contents, saturated water content, Electrical Conductivity (EC), pH, real density, Organic matter (OM), Total Neutralizing Value (TNV) and bulk density (ρb). Bulk and real densities determined based on stepwise regression analysis as most important inputs to neural network model. Then a two layer perceptron neural network with 1000 different samples trained with some available transfer and training functions in Matlab. Results assessed with NUE as an integrated index defined as ratio of percentage of the observation coverage by 95 percent prediction uncertainty (95PPU) divided by average relative interval length of 95PPU. Uncertainty analysis results revealed that log-sigmoid and linear transfer functions with NUE values 0.57 and 0.59 performed better tan-sigmoid transfer function with NUE=0.25. Also all training functions (except of gradient descent training function) could predict saturated hydraulic conductivity with high reliability.


اکبرزاده، ع.، نوری،ر.، فرخ‌نیا،ا.، خاکپور،ا و صباحی،م.س. 1389. تحلیل دقت و عدم قطعیت مدل‌های هوشمند در پیش‌بینی ضریب انتشار طولی رودخانه‌ها. فصلنامه علمی-پژوهشی آب و فاضلاب, جلد 21 ، شماره 3, صفحه 107-99.
جلالی،و.ر.، خاشعی سیوکی،ع و همایی،م. 1392. مقایسه روش­های زمین آماری با روش غیر پارامتریک K- نزدیک­ترین همسایه برای برآورد هدایت هیدرولیکی اشباع خاک. 20.5: 147-162.
رهنما،ب.، ناصری،م و زهرایی،ب. 1393. تشخیص ساختار بهینه و تحلیل عدم قطعیت مدل بیلان آبی ماهانه، مجله پژوهش آب ایران8: شماره 14، 77-86.
فرخ نیا،ا و مرید،س. 1388. تحلیل عدم قطعیت مدل­های شبکه عصبی و نروفازی در پیش بینی جریان رودخانه، تحقیقات منابع آب ایران5.3: شماره 14-27.
Aqil,M., Kitab,I., Yanob,A., Nishiyamac,S. 2007 Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. Journal of Environ Managment 85.1: 215–223.
Bowden,G.J., Dandy,G.C., Maier,H.R. 2005 Input determination for neural network models in water resources applications. Part 1—background and methodology. Journal of Hydrology. 301.1: 75-92.
Dybowski,R. 1997 Assigning confidence intervals to neural network predictions. Technical report, Division of Infection (St Thomas’ Hospital), King’s CollegeLondon.
Eckhardt,K., Breuer,L and Frede,H.G. 2003 Parameter uncertainty and the significance of simulated land use change effects. Journal of Hydrology. 273.1: 164-176.
Jin,X., XU,C.Y., Zhang,Q., Sing,V.P. 2010 Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology. 383:147-155.
Li,L., Xia,J., Xu,C.-Y., Chu,J., Wang,R. 2009 Analyse the sources of equifinality in hydrological model using GLUE methodology. In: Hydroinformatics in Hydrology, Hydrogeology and Water Resources, Proceedings of Symposium JS.4 at the Joint IAHS & IAH Convention, Hyderabad. India. IAHS Publ. 331: 130–138.
Marcé,R., Comerma,M., García,J.C., Armengol,J. 2004 A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnology and Oceanography: Methods. 2.11: 342-355.
Menhaj,M. B. 1998 Fundamentals of neural networks. Computational  intelligence. 1: 222-229.
Motaghian,H.R., Mohammadi,J. 2011 Spatial estimation of saturated hydraulic conductivity from terrain attributes using regression, kriging, and artificial neural networks. Pedosphere. 21.2: 170-177.
Noori,R., Abdoli,M.A., Farokhnia,A and Abbasi,M. 2009 Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network. Expert Systems with Applications. 36.6: 9991-9999.
Talebizadeh,M., Morid,S., Ayyoubzadeh,S.A., Ghasemzadeh,M. 2010 Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resources Management. 24.9: 1747-1761.
Tayfur,G., Nadiri,A.A., Moghaddam,A.A. 2014 Supervised intelligent committee machine method for hydraulic conductivity estimation. Water Resources Management. 28.4: 1173-1184.
Tibshirani,R. 1994 A Comparison of Some Error Estimates for Neural Network Models. Technical Working Paper No. 94-10, Department of Statistics, University of Toronto.
Tsai FTC, Li X. 2008. Multiple parameterization for hydraulic conductivity identification. Groundwater 46(6):851–864.
Yao,R.J., Yang,J.S., Wu,D.H., Li,F.R., Gao,P., Wang,X.P. 2015 Evaluation of pedotransfer functions for estimating saturated hydraulic conductivity in coastal salt-affected mud farmland. Journal of Soils and Sediments, 1-15.
Zealand,C.M., Burn,D.H and Simonovic,S.P. 1999 Short term streamflow forecasting using artificial neural network. Journal of Hydrology. 214: 32-48.