معرفی مدل توسعه یافته KDW-VG و بررسی کارایی آن در شبیه‌سازی عددی جریان ترجیحی آب در خاک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی دانشگاه شهید چمران اهواز، اهواز، ایران

2 استاد دانشکده مهندسی علوم آب،گروه آبیاری و زهکشی دانشگاه شهید چمران اهواز، اهواز، ایران

3 استادیار گروه مهندسی آب، دانشکده علوم کشاورزی دانشگاه گیلان، رشت، ایران

چکیده

جریان­های ترجیحی سریع در خلل و فرج درشت خاک، مانند سوراخ و کانال­های زیرزمینی که با فعالیت کرم­ها و یا رشد ریشه گیاهان به وجود می­آید، رخ می­دهند. برای پیش­بینی روند و توضیح این نوع جریان­ها در خاک، دی پترو و همکاران (2003)، مدل موج سینماتیک، انتشار (4KDW) را توسعه و پیشنهاد دادند. نام­بردگان این مدل را با اضافه کردن ترم انتشار به معادله موج سینماتیک (5KW) که به شدت توده­ای است و توسط جرمن در سال 1985 ارائه شده بود، توسعه دادند (Di pietro et al., 2003)، (German., 1985). فرض­های اساسی این مدل، این است که فلاکس جریان به تنهایی تابعی از مقدار آب متحرک است. ولی در مدل موج سینماتیک، انتشار با اضافه شدن بخش انتشار به معادله قبلی،فرض می­شود که فلاکس جریان یک تابع غیر خطی از مقدار آب متحرک و مشتق اول آن نسبت به زمان می­باشد. بخش اول این فرض یک تابع توانی است که در آن فلاکس جریان به رطوبت متحرک وابسته است. این معادله توانی تنها یک معادله ریاضی است و از معنی و مفهوم فیزیکی چندانی برخوردار نیست. در این پژوهش این معادله توانی با صورت ظاهری معادله وان گنوختن که معنی فیزیکی قابل قبولی دارد، جایگزین شد و مدل ریاضی موج سینماتیک، انتشار- وان گنوختن (6KDW-VG) برای اولین بار معرفی شد. ابتدا ضرایب مدل با استفاده از روش بهینه­سازی تراکم ذرات(7PSO) به دست آمد و سپس مدل با استفاده از داده­های آزمایشگاهی مربوط به هیدروگراف حاصل از بارندگی و گذار آب از مسیرهای ترجیحی مدل فیزیکی که از انتهای ستون خاک برداشت شده بود، مورد صحت سنجی قرار گرفت. برای ایجاد مسیر ترجیحی در خاک، یک ستون ماسه درشت به قطر 4/1 سانتی­متر در مرکز ستون خاکی به قطر خارجی 160 و ارتفاع 300 میلی­متر ایجاد شد. نتایج این پژوهش نشان از تطابق بسیار خوب مدل با مشاهدات آزمایشگاهی داشت و مقادیر RMSE بین مشاهدات و پیش­بینی­های مدل حاضر نسبت به مطالعات پیشین کم­تر بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Introducing Developed KDW-VG Model and Its Performance Iinvestigation to Numerical Simulation of Preferential Water Flow in Soil

نویسندگان [English]

  • Mostafa Moradzadeh 1
  • Hadi Moazed 2
  • Saeid Boroomandnasab 2
  • Mohammad reza Khaledian 3
1 PhD student of Irrigation and Drainage Engineering, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz,., Ahvaz., Iran
2 - Professor at Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz., Ahvaz., Iran
3 Faculty of Agricultural Sciences, Department of Water Engineering, University of Guilan., Rasht., Iran
چکیده [English]

Rapid preferential water flow occurs in soil macropores such as underground channels formed by worm activity and root plants growth. For process predicting and describing of these types of water flow in soil, Di Pietro et al., (2003) developed and proposed kinematic–dispersive wave (KDW) model. They proposed this model by adding dispersive term to kinematic wave model which is strictly convective and was presented by German (1985). The fundamental assumption of this model is that the flux is exclusively a function of the mobile water content but in kinematic–dispersive wave model with its aditional dispersive term, it is assumed that the flux is some non-linear function of the mobile water content and its first time derivative. The first term of this assumption is a power function where the flux is depended to mobile water content .This equation is just a mathematic equation and has not the strong physical meaning. In this research, this power function is substituted by the shape of van Genuchten equation which has an acceptable physical meaning and the kinematic dispersive wave- van Genuchten (KDW-VG) is introduced for the first time. At first the model coefficients were optimized using particle swarm optimization (PSO) method and after that the model was validated by experimental observation of hydrograph of rainfall which was passed through the preferential routes of physical model and was recorded from the bottem of soil column. For creating the preferential pathways in the soil profile, a soil column of coarse sand with diameter of 1.4 cm was embedded in the center of a soil column with diameter of 160 mm and height of 300 mm.The results showed that the numerical model has very good agreement with the experimental observations and the RMSE amount between observations and the model prediction was lesser compared with last researches.

کلیدواژه‌ها [English]

  • Physical Model
  • Porous media
  • Mathematical Modeling
  • optimization
  • Rainfall hydrograph
عباسی،ف. 1386 .فیزیک خاک پیشرفته. موسسه انتشارات و چاپ دانشگاه تهران. چاپ اول.
Abbasi, F., Javaux, M., Vanclooster,M., Feyen,J. 2012. Estimating hysteresis in the soil water retention curve from monolith experiments. Geoderma 189–190, 480–490.
Alaoui,A. 2015. Modelling susceptibility of grassland soil to macropore flow. Journal of Hydrology. 525: 536–546.
Chen,C., Wagenet,R.J. 1992. Simulation of water and chemicals in macropore soils: representation of the macropore influence and its effect on soil water flow. Journal of Hydrology 130: 105–126.
Clothier,B.E., Green,S.R., Deurer,M. 2008. Preferential flow and transport in soil: progress and prognosis. European Journal of Soil Science. 59: 2–13.
Coppola,A., Dragonetti,G., Comegna,A., Lamaddalena,N., Caushi,B., Haikal,M.A and Basile,A. 2013. Measuring and modeling water content in stony soils. Soil and Tillage Research. 128: 9–22.
Di Pietro,L., Ruy,S., Capowiez,Y. 2003. Predicting water flow in soils by traveling-dispersive waves. Journal of Hydrology. 278.1-4: 64-75.
Eberhart,R.C., Kennedy,J. 1995. A new optimizer using particle swarm theory, In Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan. 39-43.
Flury,M. 1996. Experimental evidence of transport of pesticides through field soils – a review. Journal of Environmental Quality. 25: 25-45.
 Gallage,C., Kodikara,J., Uchimura,T. 2013. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils and Foundations. 53.3:417–430.
Gerke,H.H. 2006. Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science. 169.3: 382–400.
Germann,P.F. 1985. Kinematic wave approximation to infiltration and drainage into and from soil macropores. Transactions ASAE 28:745–749.
Germann,P.F., Beven, K. 1985. Kinematic wave  approximation to infiltration into soils with sorbing macropores. Water Resources Research. 21: 990–996.
Germann,P.F. 1990. Preferential flow and the generation of runoff: boundary layer flow theory. Water Resources Research. 26.12: 3055–3063.
Germann,P.F., Di Pietro,L., Singh,V. 1997. Momentum of flow in soils assessed with TDR-moisture readings. Geoderma 80: 153–168.
Hardie, M.A., Lisson,S., Doyle,R.B., Cotching,W.E. 2013b. Evaluation of rapid approaches for determining the soil water retention function and saturated hydraulic conductivity in a hydrologically complex soil. Soil and Tillage Research. 130:99–108.
Jarvis,N.J. 2007. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. European Journal of Soil Science. 58.3: 523–546.
Jianzhi,N., Xinxiao,Y., Zhiqiang,Z. 2007. Soil preferential flow in the dark coniferous forest of Gongga Mountain based on the kinetic wave model with dispersion wave (KDW preferential flow model). Acta Ecologica Sinica. 27.9: 3541−3555.
Kennedy,J., Eberhart,R.C. 1995. Particle Swarm Optimization. In Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, IEEE Service Center, Piscataway. NJ. 6: 1942-1948.
Koestel,J and Jorda,H. 2014. What determines the strength of preferential flow in undisturbed soil under steady-state flow? Geoderma 217–218, 144–160.
Majdalani,M., Angulo-Jaramillo,R., Di Pietro,L. 2008. Estimating preferential water flow parameters usinga binary genetic algorithm inverse method. Environmental Modelling & Software, 23 950-956.
Mdaghri-Alaoui,A. 1998. Transferts d’eau et de substances dans des milieux non sature´s a` porosite´ bimodale: expe´rimentation et mode´lisation, Thesis, Universita t Bern, Bern. 143.
 Nielsen,D.R and Biggar,Y.W. 1961. Measuringcapillaryconductivity.Soil Science. 92:192–193.
 Poulovassilis,A. 1969. The effect of hysteresis of pore-water on the hydraulic conductivity. (Department of Agricultural Chemistry, School of Agriculture, Athens). Journal of Soil Science. 20.1: 52-56.
Rousseau,M., Ruy,S., Di Pietro,L., Angulo-Jaramillo,R. 2004. Unsaturated hydraulic conductivity of structured soils from a kinematic wave approach. Journal of Hydraulic Research. 42: 83-91.
Tsoulos,I.G., Stavrakoudis,A. 2010. Enhancing PSO methods for global optimization. Applied Mathematics and Computation. 216.10: 2988–3001.
van Genuchten,M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils". Soil Science Society of America Journal. 44.5: 892–898.
Wang,Y., Bradford,S.A., Šimůnek, J. 2013 a. Transport and fate ofmicroorganisms in soils with preferential flow under different solution chemistry conditions. Water Resources Research. 49.5: 2424–2436.
Wang,Y., Bradford,S.A., Simunek, J. 2013 b. Physical and Chemical Factors Influencing the Transport and Fate of 4 E. coli D21g in Soils with Preferential Flow. Doctor of Philosophy Dissertation in Environmental Sciences, Chapter 3, University of California, Riverside, USA.
Youngs, E.G. 1964. An infiltration method of measuring the hydraulic conductivity of unsaturated porous materials. Soil Science. 97. 5: 307-311.