Evaluation of Groundwater Quality in Mashhad Aquifer Using the Indicator Kriging Based on Nitrate Pollution

Document Type : Original Article

Authors

1 PhD Candidate, Irrigation and Drainage, International Campus, Ferdowsi University of Mashhad., Mashhad., Iran

2 Professor, Department of Water Engineering, Ferdowsi University of Mashhad., Mashhad., Iran

Abstract

Using normal Kriging in the evaluation of groundwater quality can not specify the areas susceptible to pollution. In this study, to determine the extent of exceeded nitrate pollution (50 mg/L) as well as identifying the areas susceptible to pollution, nitrate data of 287 wells within an area of 320 square kilometers in Mashhad and the statistical range of 2002 to 2011 was analyzed by R software. The process of evaluation and analysis included re-arranging data sheets, detection of outliers, removing the trend, studying the isotropy, determination of the optimum variogram models for each year, and formulating the spatial and temporal Indicator Kriging. The results showed that Matern semivariogram was the best model for explaining the spatial structure data in each year. Also, in the statistical range respectively 7.1, 5.8, 7.2, 8.5, 8.6, 9.4, 10.4, 2.1, and 2.4 percent of the studied area has passed the pollution allowed limit. It seems that more polluted areas have been controlled since 2009 by some strategies such as shutting down the polluted wells, preventing new well digging, transferring water from Doosti Dam, using appropriate agricultural wells for drinking section and implementation of wastewater collection network. In addition, respectively 10.4, 11.7, 12.4, 9.4, 14.3, 12.2, 6, 11.6 and 11.5 percentage of total area was prone to pollution during these years. Therefore, these areas need more attention for monitoring and controlling the source of pollution.

Keywords


اکبرزاده،م و قهرمان،ب. 1392. استفاده همزمان از آنتروپی و کریجینگ فضایی-زمانی برای تعیین شبکه بهینه پایش کیفی منابع آب زیرزمینی دشت مشهد، نشریه آب و خاک. 27. 3: 613-629.
آتشی،م.، شریفی،م.ب و داوری،ک. 1391. دسته­بندی کیفی منابع آب زیرزمینی شرب شهر مشهد براساس استانداردهای آب آشامیدنی، همایش ملی مهندسی محیط زیست، انجمن مهندسی محیط زیست ایران، تهران.
حسنی پاک،ع.ا. 1389. زمین آمار. انتشارات دانشگاه تهران. چاپ سوم.
دولتی،ج. 1389. بررسی اثرات زیست محیطی توسعه شهر مشهد بر آبخوان و منابع آب، کنگره ملی مهندسی عمران، دانشگاه فردوسی مشهد.
ذوالعلی،و و بارانی،غ. 1391. بررسی روند تغییرات کیفیت آب­های زیرزمینی دشت مشهد با استفاده از نرم افزار هیدروشیمی، همایش ملی مهندسی محیط زیست، انجمن مهندسی محیط زیست ایران، تهران.
رستمی خلج،م.، محسنی ساروی،م.، افشارنیا،ر و سلمانی،ح. 1390. پایش توزیع مکانی کیفیت آب زیرزمینی با استفاده از روش­های زمین آمار : مطالعه موردی حوزه شهری مشهد، همایش ملی علوم و مهندسی آبخیزداری، دانشگاه صنعتی اصفهان.
رضازاده ورقچی،ف.، خاشعی سیوکی،ع و شجاعی سیوکی،ح. 1389. بررسی آلودگی آب­های زیرزمینی دشت مشهد به­منظور ارزیابی شاخص­های آب شرب با استفاده از سیستم اطلاعات جغرافیایی، کنفرانس ملی پژوهش­های کاربردی منابع آب ایران، شرکت آب منطقه­ای کرمانشاه.
رضاییان لنگرودی،س.، کریمی،ی و حسینی،س.ه. 1390. ارزیابی کیفیت آب زیرزمینی دشت مشهد از نظر شرب و کشاورزی، همایش علوم زمین، دانشگاه آزاد اسلامی واحد آشتیان.
محمدزاده درودی،م و صفری فارفار،ر. 1382. مقایسه روش­های درون‌­یابی برای داده­های فضایی. نشریه علوم، دانشگاه تربیت معلم، تهران. 3.3: 243-250.
محمدزاده،م. 1391. آمار فضایی و کاربردهای آن. انتشارات دانشگاه تربیت مدرس، چاپ اول، تهران.
هادوی،ر.، شهاب پور،ج و مظاهری،س.ا. 1388. بررسی کیفیت هیدروژئوشیمیایی آب زیرزمینی شهر مشهد، کنفرانس زمین­شناسی مهندسی و محیط زیست ایران، دانشگاه تربیت مدرس، تهران.
Addiscott,T.M. 1999. Introductory comments to section 3 nitrates and health. In: Hinton, R.H. (eds), Managing the Risks of Nitrate to Humans and the Environment, Royal Society of Chemistry, Cambridge.
Arslan,H. 2012. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey, Agricultural Water Management. 113: 57-63.
Chica-Olmo,M., Luque-Espinar,J.A., Rodriguez-Galiano,V., Pardo-Igúzquiza,E and Chica-Rivas,L. 2013. Categorical Indicator Kriging for assessing the risk of groundwater nitrate pollution: The case of Vega de Granada aquifer (SE Spain). Journal of Science of the Total Environment. 470: 229-239.
Coetzee,M.A.A., Roux-Van,M.M.P and Badenhorst,J. 2011. The Effect of Hydraulic Loading Rates on Nitrogen Removal by Using a Biological Filter Proposed for Ventilated Improved Pit Latrines. International Journal of Environmental Research. 5(1): 119-126.
Cressie,N. 1993. Statistics for Spatial Data, Revised Edition. New York: Johen Wiley.
Dash,J.P., Sarangi,A., Singh,D.K. 2010. Spatial variability of groundwater depth and quality parameters in the National Capital Territory of Delhi. Environmental Management. 45: 640–650.
Delbari,M., Amiri,M and Motlagh,M.B. 2014. Assessing groundwater quality for irrigation using indicator kriging method. Journal of Applied Water Science: 1-11.
Gaus,I., Kinniburgh,D.G., Talbot,J.C., Webster,R. 2003. Geostatistical analysis of Arsenic concentration in groundwater in Bangladesh using disjunctive kriging. Environmental Geology. 44: 939-948.
Goovaerts,P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press: New York, USA.
Grunwald,S., Goovaerts,P., Bliss,C.M., Comerford,N.B and Lamsal,S. 2006. Incorporation of auxiliary in formation in the geostatistical simulation of soil nitratenitrogen. Vadose Zone Journal. 5: 391-404.
Haining,R. 1991. Spatial Data Analysis in the Social and Environmental Sciences. Cambridge University Press.
Harrison,R.M. 1992. Pollution: Causes, Effects and Control. Royal Society of Chemistry, London.
Hudak,P.F. 2012. Nitrate and Chloride Concentrations in Groundwater beneath a Portion of the Trinity Group Out crop Zone, Texas. International Journal of Environmental Research. 6.3: 663-668.
Isaak,E.H and Srivastar,R.M. 1989. An Introduction to Applied Geostatistics. Oxford Univ. Press, Oxford. 561 P.
Jang,C.S and Chen,S.K. 2015. Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones. Journal of Hydrology. 523: 441-451.
Jarvis,S.C. 1999. Nitrogen dynamics in natural and agricultural ecosystems. In: Wilson,W.S, Ball,A.S and Hinton,R.H. (eds), Managing the Risks of Nitrate to Humans and the Environment. Royal Society of Chemistry, Cambridge. 2-20.
Kuisi,M.A., Al-Qinna,M., Margani,A and Aljazzar,T. 2009. Spatial assessment of salinity and nitrate pollution in Amman-Zarqa Basin: a case study. Journal of Environmental Earth Sciences 59: 117-129.
Li,H., Wang,Y., Shi,L.Q., Mi,J., Song,D and Pan,X.J. 2012. Distribution and Fractions of Phosphorus and Nitrogen in Surface Sediments from Dianchi Lake, China. International Journal of Environmental Research. 6.1: 195-208.
McLay,C.D.A., Dragten,R., Sparling,G and Selvarajah,N. 2001. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollution. 115: 191-204.
Odeh,I.O.A and Onus,A. 2008. Spatial analysis of soil salinity and soil structural stability in a semiarid region of New South Wales, Australia. Environmental Management. 42: 265-278.
Ortiz, J and Deutsch,C.V. 2002. Calculation of uncertainty in the Variogram. Mathematical Geology. 34: 169-183.
Piccini,C., Marchetti,A., Farina,R and Francaviglia,R. 2012. Application of Indicator kriging to Evaluate the Probability of Exceeding Nitrate Contamination Thresholds. International Journal of Environmental Research. 6.4: 853-862.
Zhang,J.X and Yao,N. 2008. Indicator and multivariate geostatistics for spatial prediction. Journal of Geo-spatial Information Science. 11(4):243-246.