شبیه‌سازی اثرات تنش آبی و نیتروژن بر عملکرد و اجزای عملکرد گیاه ذرت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی گروه تولیدات گیاهی و گیاهان دارویی دانشکده کشاورزی و منابع طبیعی، دانشگاه تربت حیدریه، تربت حیدریه، ایران

2 دانشیار، عضو هیات علمی، گروه مهندسی آبیاری و زهکشی، دانشکده علوم آب، دانشگاه شهید چمران اهواز

3 استادیار، عضو هیات علمی، گروه آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه فسا، فسا، ایران

چکیده

آب و نیتروژن مهم­ترین پارامترهای مؤثر بر عملکرد محصولات مختلف، از جمله ذرت می­باشند. هدف از اجرای این طرح، بررسی میدانی واکنش گیاه ذرت به سطوح مختلف آب و نیتروژن و شبیه­سازی آن با مدل Aquacrop می­باشد. تیمارهای آبی شامل تیمار شاهد (100I، تأمین 100 درصد نیاز آبی)، اعمال دو سطح تنشی 80 و 60 در­صد نیاز آبی به ترتیب در مراحل رشد رویشی (80IR و 60IR)، گلدهی (80IG و 60IG) و پر شدن دانه (80IP و 60IP) و تیمارهای نیتروژن در دو سطح 100 (100N،220N=) و 50 درصد (50N،110 N=) نیاز کودی بود. نتایج میدانی نشان داد که مراحل رشد و توسعه گیاه، تحت تأثیر تیمارهای مختلف تنش آبی و نیتروژن قرار گرفته است. نتایج تجزیه واریانس مرکب نشان می­دهد که اعمال تیمارهای مختلف آبی و نیتروژن در مراحل مختلف رشد، تأثیر معنی­داری بر میزان ماده خشک بالای سطح زمین و عملکرد دانه در سطح 1% داشته است. نتایج شبیه­سازی نیز نشان داد که مدل Aquacrop توانسته است  تغییرات پوشش کانوپی، تجمع ماده خشک و عملکرد دانه را در طول فصل رشد به­خوبی شبیه­سازی کند. بنابراین مدل Aquacrop واسنجی شده موجود، در گستره وسیعی از شرایط آب و هوایی ایران قابل استفاده می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Effects of Water Stress and Nitrogen Levels on Yield and Yield Components Corn

نویسندگان [English]

  • Amir salari 1
  • Abdolrahim Hooshmand 2
  • Mehdi Bahrami 3
1 Assistant professor, Agricultural faculty, University of Torbat Heydarieh.,Torbat Heydarieh., Iran
2 Associate Professor, Water Science Faculty, Shahid Chamran University., Ahvaz., Iran
3 Assistant professor, Agricultural Faculty, Fasa University., Fasa., Iran
چکیده [English]

Water and nitrogen are the most important parameters affecting the yield of different plants such as corn. The aim of this study was to investigate the response of field corn to different levels of water and nitrogen and simulating with Aquacrop model. Water treatments were included control (I100), water stress in vegetative growth, flowering and grain filling stages, each of them had two levels 80% and 60% of water requirement and application of nitrogen fertilizer in two levels of 220 (N100) and 110 (N50) Kg N/ha. Field results showed that various stages of crop growth was affected by water and nitrogen stresses.The results of analysis of variance showed that various water and nitrogen treatments had a significant effect on above-ground biomass and grain yield at 1%. AquaCrop model was able to accurately simulate canopy cover, biomass and grain yield during the growth season. Simulation results showed that calibrated AquaCrop model can be used to a wide range of Iran.

کلیدواژه‌ها [English]

  • Biomass
  • Corn
  • Simulation
  • Water
  • Yield
الباجی،م.، بهزاد،م.، برومند نسب،س.، ناصری،ع  و شاهنظری،ع.  1389. بررسی اثر روش­های آبیاری معمولی CI کم آبیاری تنظیم شده (RDI) و کم آبیاری به­صورت خشکی موضعی ریشه (PRD) بر بهره­وری آب (WP) و کارایی مصرف آب (WUE) آفتابگردان. پایان نامه دکتری. 220 صفحه.
حیدری نیا،م.، ناصری،ع و برومند نسب،س. 1389. بررسی امکان کاربرد مدل AquaCrop در برنامه­ریزی آبیاری ذرت، آفتابگردان و پنبه. پایان­نامه کارشناسی ارشد. 98 صفحه.
لک،ش.، نادری،ا.،  سیادت،س.ع.، آینه بند،ا.،  نور محمدی،ق  و موسوی،س.ه. 1386. تأثیر سطوح مختلف آبیاری، نیتروژن و تراکم بوته بر عملکرد، اجزای عملکرد و انتقال مجدد مواد فتوسنتزی ذرت دانه­ای در شرایط آب و هوایی خوزستان. مجله علوم و فنون کشاورزی و منابع طبیعی. 11. 42 (الف): 1-14.
علیزاده،ا.، مجیدی،ا.،  نادیان،ح.،  نور محمدی،ق  و عامریان،م.  1386. بررسی اثر تنش خشکی و مقادیر مختلف نیتروژن بر فنولوژی و رشد ونمو ذرت. مجله علوم کشاورزی و منابع طبیعی. 14: 1-11.
 
Cavero,J., Farre,I., Debaeke,P and Faci,J.M. 2000. Simulation of maize yield under water stress with the EPICphase and CROPWAT models. Agronomy Journal. 92:679–690.
Claasen,M.M and Shaw,R.H. 1970. Water deficit effects on corn: II Grain Components. Agronomy Journal.62: 652-655.
Doorenbos,J and Kassam,A.H. 1979. Yield response to water. FAO Irrigation and Drainage Paper No. 33, FAO, Rome, Italy, 193 pp.
Farre,I and Faci,J.M. 2009. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agricultural Water Management. 96: 383–394.
Gheysari,M., Mirlatifi,S.M., Bannayan,M., Homaee,M and Hoogenboom,G. 2009. Interaction of water and nitrogen on maize grown for silage. Agricultural Water Management 96:809 – 821
Hsiao,T., Heng,L.K., Steduto,P., Rojas,B., Raes,D and Fereres,E. 2009. AquaCrop—The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal. 101:448– 459.
Hutson,I.L and Wagenet,R.J. 1992. LEACHM. Leaching estimation and chemistry model: a process based model of water and solute movement, transformations, plant uptake and chemical reactions in unsaturated zone. Version 3. Department of Agronomy, Cornell University, Ithaca, NY, USA.
Jones,C.A and Kiniry,J.R., 1986. The CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A and M University Press, Coll. Sta., TX, USA.
Leonard,R.A., Kinsel,W.G and Still,D.A. 1987. GLEAMS: ground-water loading effects of agricultural management systems. Transaction of the American Society of Agricultural Engineering. 30, 1403–1418.
Mcpherson,H.G and Boyer,J.S. 1977. Regulation of grain yield by photosynthesis in maizesubjected to a water deficiency. Agronomy Journal. 69:714-718.
Moser,S.B., Feil,B., Jampatong,S and Stamp,P. 2006. Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize. Agricultural Water Management. 81: 41–58.
Oktem,A., Simsek,M and Oktem,A.G., 2003. Deficit irrigation on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region. Agricultural Water Management. 61: 63–74.
Pandey,R.K., Maranville,J.W and Admou,A. 2000. Deficit irrigation and nitrogeneffects on maize in a Sahelian environment. I. Grain yield and yield components. Agricultural Water Management. 46, 1–13.
Payero,J.O., Tarkalson,D.D., Irmak,S., Davison,D and Petersen,J.L. 2008. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency and dry matter production in a semiarid climate. Agricultural Water Management. 95: 895–908.
Raes,D., Steduto,P., Hsiao,T.C and Fereres,E. 2009. AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and soft ware description. Agronomy Journal. 101:438–447.
Soler,C.M.T., Hoogenboom,G., Sentelhas,P.C and Duarte,A.P. 2007. Impact of water stress on maize grown off-season in a subtropical environment. Journal of Agronomy and Crop Science. 193: 247–261.
Steduto,P., Hsiao,T.C., Raes,D and Fereres,E. 2009. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal. 101:426–437.
Stockle,C.O., Donatelli,M and Nelson,R. 2003. CropSyst- a cropping systems simulation model. European journal of Agronomy. 18:289–307.
Stone,P.J., Wilson,D.R., Reid,J.B and Gillespie,R.N. 2001. Water deficit effects on sweet corn. I Water use, radiation use efficiency, growth, and yield. Australian journal of Agricultural Research. 52: 103–113.
Traore,S.B., Carlson,R.E., Pilcher,C.D and Rice,M.E. 2000. Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agronomy Journal. 92: 1027–1035.
Yang,H.S., Dobermann,A., Lindquist,J.L., Walters,D.T., Arkebauer,T.J and Cassman,K.G. 2004. Hybrid-maize-a maize simulation model that combines two crop modeling approaches. Field Crops Research. 87:131–154.