Modeling Response of Hashemi Rice Variety to Change in Salinity Levels during the Growth Stages

Document Type : Original Article

Authors

1 Candidate in Irrigation and Drainage, Water Science and Engineering Department College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran,

2 Associate Professor, Water Science and Engineering Department College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran,

3 Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization

4 Associate Professor, Water Engineering Department, Islamic Azad University, Lahijan., Iran

Abstract

Population growth and decreases water availability led to decreases water resources and consequently decreasing in the water portion of agricultural sector. So researchers in this condition have to find new solutions for utilization of low quality water in agriculture. This research was performed in order to assess the possibility of saline water use in Hashemi rice production, Rice yield estimation using production function and Find the best time to use these waters in Rice Research Institute during 2010 crop season. Plan was in pot cultivation under shelter with factorial arrangement in a randomized complete block design in 4 levels of water salinity i.e. 2, 4, 6, and 8 dsm-1 that were applied at 4 different growth stages i.e. tillering, panicle forming, heading and ripening. Saline water was made by using NaCl + CaSO4 (2:1). Results showed that the effect of different levels of salinity and different growth stages on yield was significant. Applied salinity levels, respectively represented 21, 25, 37 and 47 percent yield losses. The panicle formation and tillering stages with 1.92 and 2.41 T[1]on per Hectare of yield were the most sensitive stages to salinity. There was positive correlation between Grain yield and Panicle weight, 1000-grain weight and panicle length but negatively correlated with the Percentage of emptiness per panicle. According to results it is possible to predict rice production function under conditions of salinity at different growth stages using Panicle weight, Percentage of emptiness and number of tillers, can predicted.


 

Keywords


رضایی،م. 1389. گزارش نهایی طرح اثر به­کارگیری آب شور در شرایط تنش خشکی بر عملکرد برنج. مؤسسه تحقیقات برنج کشور.
بغدادی،م. 1377. مطالعات خاکشناسی شمال ایران(استان گیلان)، پروژه مطالعات تفصیلی خاک ایران، وزارت کشاورزی، موسسه تحقیقات خاک و آب،  گزارش فنی شماره 1045
سعادت،س.، همایی،م  و لیاقت،ع.م. 1384. اثر شوری خاک بر جوانه­زنی و رشد گیاه­چه سورگوم علوفه­ای. مجله علوم خاک و آب. 19 .2: 254- 243.
شهدی کومله،ع. 1373. تأثیر منبع و سطوح شوری و میزان ازت بر رشد و ترکیب شیمیایی دو رقم برنج (Oryza sativa L.) . پایان نامه کارشناسی ارشد. دانشکده کشاورزی. دانشگاه شیراز. 99 ص.
کاووسی،م. 1374. تعیین مدل مناسب پیش بینی عملکرد برنج در شوری­های مختلف برای ارقام سپیدرود، حسن­سرایی و خزر. پایان نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه تبریز. 90ص.
کاووسی،م و  مجللی،ح. 1375. اثر شوری محلول خاک بر روی عملکرد برنج (ارقام سپیدرود، حسن سرایی و خزر). خلاصه مقالات پنجمین کنگره علوم خاک ایران. آموزشکده کشاورزی کرج .131ص.
محمدی،م. 1349. گزارش خاک مزرعه پایلوت از پروژه بهبود کشت برنج. موسسه خاک و باروری، استان گیلان. بولتن شماره 269.
همایی،م. 1381. واکنش گیاهان به شوری. انتشارات کمیته ملی آبیاری و زهکشی ایران.
Asch,F., Dingkuhn,M and Dorffling,K. 2000. Salinity increases CO2 assimilation but reduces growth in field-grown irrigated rice.  Land and Soil. 218:1-10.
Beatriz,G., Piestun,N and  Bernstein,N. 2001. Salinity-Induced Inhibition of Leaf Elongation in Maize Is Not Mediated by Changes in Cell Wall Acidification Capacity1. Plant Physiology. 125:1419–1428.
Casanova,D., Goudriaan,J., Bouma,J and Epema,G.F. 1999. Yield gap analysis in relation to soil properties in direct-seeded flooded rice. Geoderma. 91: 191–216.
Castillo,E.G., Tuong,T.P., Abdelbaghi,M and Kazuyuki,I. 2007.  Response to salinity in rice: comparative effects of osmotic and Ionic stress. Plant Production Science . 10.2:159-170.
Gerge,L.Y. 1967. Accumulation of sodium and calcium by seedlings of som cereal crops under saline conditions. Agron. Journal., 59:297-299.
Hoai,T.N., Shinm,I.S., Kobayashi,K and Usui,K. 2005. Regulation of ammonium accumulation during salt stress in rice ( Oryza sativa L.) seedling. Plant Production Science 8.4:397-404.
Japan International Cooperation Agency. 2012. The study on integrated water resources management for sefidroud river basin in the Islamic Republic of Iran. Final report. CTI Engineering International Co., Ltd. Water Resources Management Company. The Ministry of Energy, the Islamic Republic of Iran.
Khan,M.S., Hamid,A and Karim,M.A. 1997. Effect of Sodium choloride on germination and seedling characters of different types of rice (Oryza Sativa L.) . Journal  of Agronomy and Crop Science. 179: 163-169
Kijne,J.W. 2006. Biotic stress and water scarcity: Identifying Iranian Journal of Soil and Waters Sciences Spring. 20.1:73-83.
Lafitte,H.R., Ismail,A., Bennett,J. 2004. Abiotic stress tolerance in rice Fore Asia progress and the future. International Rice Research Institute, DAPO 7777,Metro Manila,Philippines.
Lutts,S., Kinet,J.M and  Bouharmont,J. 1995.  Changes in plant response to response to Nacl during development of rice (Oryza Sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany. 46:1843-1852.
Mass,E.V and Hoffman,G.J. 1997. Crop salt tolerance-current assessment. Journal of Irrigation and Drainage Engineering. 103:115-134.
Moradi,F. 2002. physiological characterization of rice cultivars for  Salinity tolerance during vegetative and reproductive stages. Ph. D Thesis. University of philippines, Los Banos. Philippines.
Motamed,M.K., Asadi,R., Rezaei,M and Amiri,E. 2008. Response of high yielding rice varieties to Nacl salinity in greenhouse circumstances. African journal of Biotechnology. 7.21: 3866-3873.
Pirmoradian,N and Sepaskhah,A.R. 2006.  A Very Simple Model for Yield Prediction of Rice under Different Water and Nitrogen Applications. Biosystems Engineering. 93.1: 25–34.
Scardaci,S.C., Eke,A.U., Hill,J.E., Shannon,M.C and Rhoades,J.D. 1996. Water and soil salinity studies on California rice. Rice Publication No. 2, Cooperation. Extension. University of California, Colusa. CA.
Sepaskhah,A.R and yousofi-Falakdehi A. 2009. Interaction between the effects of deficit irrigation and water salinity on yield and yield component of rice in pot experiment. Plant Production Science. 12.2:168-175.
Shannon,M.C., Rhoades,J.D., Draper,J.H., Scardaci,S.C., Spyres,M.D. 1998. Assessment of salt tolerance in rice cultivars in response to salinity problems in California Crop Science. 38: 394-398.
Steppuhn,H., Van Genuchten,M.Th  and Grieve,C.M. 2005. Root-Zoon salinity:I. Selcting a product-Yield Index and Response Function for crop Tolerance. Published in crop Science. 45:209-220
Wilkinson,R.E. 1994. Plant-environment interactions whole plant response to salinity:199-243.
Wopereis,M.C.S., Kropff,M.J.,  Maligaya,A.R  and Toung,T.P. 1996. Drought-stress responses of two lowland rice cultivars to soil water status. Field Crops Res. 46: 21-39.
Xiong,w., Holman,I. Conway,D and  Lin,E. 2008.  A crop model cross calibration for use in regional climate impacts studies. Ecological Modeling 213:365-380
Zeng,L and Shannon,M.C. 2000. Effects of Salinity on Grain Yield and Yield Components of Rice at Different Seeding Densities. Agronomy Journal. 92:418–423
Zeng,L and Shannon,M.C. 2003. Salinity Effects on Seedling Growth and Yield Components of Rice. Crop Science. 40:996–1003.