بررسی عملکرد مدل‌های SVR و GEP در پیش‌بینی نوسانات ماهانه تراز آب دریاچه ارومیه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد مهندسی منابع آب، دانشگاه شهرکرد، شهرکرد، ایران

2 استاد گروه علوم و مهندسی آب، دانشگاه شهرکرد، شهرکرد، ایران

3 استادیار گروه علوم و مهندسی آب، دانشگاه بوعلی سینا، همدان، ایران

4 استادیار گروه علوم و مهندسی آب، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

پیش‌بینی نوسانات سطح آب دریاچه‌ها از جمله موارد مهم در مدیریت و برنامه‌ریزی منابع آب است. در سال‌های اخیر کاهش شدید تراز آب دریاچه ارومیه اثرات زیست‌محیطی مخربی را در این منطقه داشته است. در این تحقیق عملکرد مدل‌های ماشین بردار پشتیبان و برنامه‌ریزی بیان ژن با استفاده از شش الگوی متفاوت در خلال سال‌های 1388- 1355 برای پیش‌بینی تراز آب دریاچه ارومیه بررسی شد، تا بهترین الگو برای پیش‌بینی تراز آب دریاچه معرفی گردد. در چهار الگو از داده‌های تاریخی تراز و در دوالگوی دیگر از بارش، تبخیر و نشت و تراز آب استفاده شد. نتایج نشان داد که مدل برنامه‌ریزی بیان ژن عملکرد بهتری نسبت به مدل رگرسیون بردار پشتیبان دارد و با افزایش ورودی برای آموزش مدل عملکرد آن افزایش می‌یابد. هم­چنین در بهترین حالت مقدار میانگین مربعات خطا و ضریب تبیین به ترتیب برابر 08/0 متر و 99/0 برای مدل GEP، 60/0 متر و 92/0 برای مدل SVRبه دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluate the Performance of SVR and GEP Models in Predicting the Monthly Fluctuations in Water Level of Urmia Lake

نویسندگان [English]

  • Mostafa Kadkhodahosseini 1
  • Shayan Shamohammadi 2
  • Hamed Nozari 3
  • Rasoul Mirabbasi 4
1 Graduated. Student of Water Resources Engineering, Department of Water Engineering, College of Agriculture, Shahrekord University., Shahrekord., Iran
2 Professor, Department of Water Engineering, College of Agriculture, Shahrekord University., Shahrekord., Iran
3 - Assistant Professor, Department of Water Engineering, College of Agriculture, Bu-aliSina University, Hamedan., Iran
4 Assistant Professor, Department of Water Engineering, College of Agriculture, Shahrekord University, Shahrekord., Iran
چکیده [English]

Prediction of lake level fluctuations is one of the most important issues in water resources planning and management. In recent years, the significant decline in water level of Urmia Lake had detrimental environmental impacts on this region. In this study, the performance of genetic expression programming and support vector regression models for predicting Urmia Lake water level was evaluated based on six different patterns during 1976-2009 to determine the best input pattern. The historical data of water level were used in four patterns, and precipitation, evaporation, seepage and water level were used in two other patterns. The results showed that the genetic expression programming had better performance than SVR model and the model performance improves with increasing input for model training. Also, at the best pattern the mean square error and coefficient of determination were calculated 0.08 m and 0.99 for GEP model and 0.60 m and 0.92 for SVM, respectively.

کلیدواژه‌ها [English]

  • Genetic expression programming
  • Lake level
  • Regression vector machine
  • Urmia Lake
  • Seepage
احمدی،ف.، رادمنش،ف و میرعباسی،ر. 1393. مقایسه روش‌های برنامه‌ریزی ژنتیک و ماشین بردار پشتیبان در پیش‌بینی جریان روزانه رودخانه (مطالعه موردی: رودخانه باراندوز چای). مجله دانش آب و خاک مشهد. 26: 1025-1010.
کاوه کار،ش.، قربانی،م.ا.، افشار زاده،ا و دربندی،س. 1392. شبیه‌سازی نوسانات سطح آب با استفاده از برنامه‌ریزی بیان ژن. مجله عمران و محیط‌زیست. 43:63-53.
میرعباسی،ر.، کدخداحسینی،م.، شامحمدی،ش و نوذری،ح. 1393. بررسی میزان تبادل آب بین دریاچه ارومیه و سفره‌های آب زیر زمینی، دومین همایش بحران آب، 19-18 شهریور، دانشگاه شهرکرد.
صمدیان فرد،س.، حسنیا،د و ستاری،م.ت. 1392. پیش‌بینی نوسانات آب دریاچه ارومیه با استفاده از شبکه درختی M5 و برنامه ژنتیک، سی و دومین گردهمایی و نخستین کنگره بین المللی علوم زمین، 20-17 دی. دانشگاه ارومیه.
Afiq,H., Ahmed,E., Ali,N., Othman, A., Aini, K.,Mukhlisi,H.M. 2013. Daily forecastingofdam water levels: comparing a support vector machine (SVM) model withadaptiveneuro fuzzy inference system (ANFIS). Water Resources Management. 27:3803-3823.
Borelli,A., De Falco,I., Della,C.A., Nicodemi,M.,Trautteur,G. 2006. Performance of Genetic Programming toExtract the Trend in Noisy Data Series. Physica A. 370: 104-108.
Ghorbani,M., Khatibi,R., Aytek,A.,Makarynskyy,O. 2010. Sea water level forecasting using genetic programming and artificial neural networks. Journal of Computers and Geosciences. 36.5:620 627.
Hamel,L. 2009. Knowledge Discovery with Support Vector Machines. Hoboken. N.J. John Wiley.
Imani,M., You,R.J., Kou,C.Y. 2014. Forecasting Caspian Sea level changes using satellite altimetry data (June 1992–December 2013) based on evolutionary support vector regression algorithms and gene expression programming. Global and Planetary Change. 121:53–63.
Kisi,O. 2009. Neural networks and wavelet conjunction model for intermittent stream flow forecasting. Journal of Hydrologic Engineering. 14.8: 773–782.
Kisi,O., Shiri,J., Nikoofar.,B. 2012. Forecasting daily lake levels using artificial intelligence approaches. Computers and Geosciences Journal. 41: 169-180.
Lin,G.F., Chen,G.R., Huang,P.Y. 2010. Effective typhoon characteristics and their effects on hourly reservoir inflow forecasting. Advance Water Resources. 33.8:887–898.
Lin,G.F., Chou,Y.C., Wu,M.C. 2013. Typhoon flood forecasting using integrated two-stage support vector machine approach. Journal of Hydrology. 486:334–342.
Maity,R., Bhagwat,P.P.,Bhatnagar,A. 2010. Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrological Processes. 24.7:917–923.
Nourani,V., Komasi,M., Alami,M.T. 2012. Hybrid wavelet–genetic programming approach to optimize ANN modelling of rainfall–runoff process. Journal of Hydrologic Engineering. 17.6:724–741.
Noury,M., Sedghi,H., Babazadeh,H.,Fahimi,H. 2014. Urmia Lake Water Level Fluctuation Hydro Informatics Modeling Using Support Vector Machine and Conjunction of Wavelet and Neural Network. Hydropgysical Processes. 41:261-269.
Sajjad khan,M., Colibaly,P. 2006. Application of Support Vector Machine in Lake Water Level Prediction. Journal of Hydrology. 11:199-2-5.
Sivapragasam,C., Maheswaran,R., Veena,V. 2008. Genetic programming approach for flood routing in natural channels. Hydrological Processes. 22:623–628.
Vapnik,V.N. 1998. Statistical Learning Theory. Wiley, New York.
Wu,C.L., Chau,K.W. 2010. Data-driven models for monthly streamflow time series prediction. Engineering Applications of Artificial Intelligence. 23:1350–1367.
Wu,J., Liu,M., Jin,L. 2010. Least square support vector machine ensemble for daily rainfall forecasting based on linear and nonlinear regression. Advances in Neural Network Research and Applications. Lecture Notes in Electrical Engineering. 67.1:55–64.
Yu,P.S., Chen,S.T., Chang,I.F. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology. 328.3–4:704–716.