تحلیل عدم قطعیت مدل انتقال آلودگی در رودخانه به روش (GLUE)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار گروه مهندسی عمران دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 دانشیار گروه مهندسی عمران، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

4 استادیار گروه مهندسی آب دانشگاه بیرجند، بیرجند، ایران

چکیده

در رودخانه­های کم­عمق، با صرفنظر از شتاب قائم در مقابل شتاب ثقل، معادلات آب­های کم­عمق بوجود می‌آید. در این تحقیق از معادلات آب­های کم­عمق جهت شبیه­سازی انتقال آلودگی به روش حجم محدود دوبعدی در رودخانه استفاده شد. در این روش با تبدیل معادلات حاکم به معادلات خطی امکان حل عددی این معادلات فراهم ‌شد. برای دستیابی به نتایج‌ بهتر در برآورد غلظت آلودگی در رودخانه و محدوده‌ی قابل اطمینان، به تحلیل عدم قطعیت مدل انتقال آلودگی تهیه شده، پرداخته شد. برای این کار، 5000 تکرار از دامنه عدم قطعیت 3 پارامتر واسنجی مدل انتقال آلودگی با استفاده از الگوریتم عدم قطعیت GLUE صورت پذیرفت. برای این منظور از مسئله انتقال آلودگی در سد استفاده­ شد. با اعمال آستانه­ قابل پذیرش شاخص­ مجموع مربعات خطا (SSE) بر روی کل شبیه­سازی­های حاصله، تعداد 1000 شبیه­سازی برتر به عنوان شبیه­سازی­های کارآمد، قلمدادگردید. با درنظر گرفتن حدود اطمینان 95 درصد به عنوان کران­های بالا و پایین عدم قطعیت، شاخص­های d-factor و p-factor، به ترتیب 68/0 و 75/0 به دست آمد که نشان­دهنده‌ مقدار بالای غلظت‌های مشاهداتی در حدود اطمینان 95 درصد بود. این نتایج نشان داد به­کارگیری روش GLUE، منجر به کاهش عدم قطعیت پارامترهای مدل انتقال آلودگی شد. با استخراج نمودارهای احتمالاتی توزیع پسین پارامترهای متناظر با شبیه­سازی­های کارآمد، پارامتر n (ضریب مانینگ) به عنوان پارامتر حساس و تأثیرگذار بر شبیه­سازی شناخته شد و مقدار بهینه برای این پارامتر 0/2477 بدست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Uncertainty Assessment of Pollution Transport Model Using GLUE Method

نویسندگان [English]

  • Mehdi Khorashadizadeh 1
  • Seyed Arman Hashemimonfared 2
  • Abolfazl Akbarpour 3
  • Mohsen Pourreza-bilondi 4
1 Phd Student of Civil Engineering, University of Sistan and Baluchestan., Zahedan., Iran
2 Assistant Professor. Department of Civil Engineering, University of Sistan and Baluchestan., Zahedan., Iran
3 Associate Professor, Department of Civil Engineering, University of Birjand., Birjand., Iran
4 Assistant Professor. Department of Water Engineering, University of Birjand., Birjand., Iran
چکیده [English]

In shallow river, regardless of the vertical acceleration against gravity acceleration, great simplifying will be created in equations that the result of them are shallow water equations. In this study shallow water equation has been used to simulate transport of pollution in 2D limited volumes method. In this method it is possible to turn differential equations ruling fluid to be solved in numerical form. To achieve better results in estimating pollution concentration in the river and Reliable range, the pollution Transformation Model uncertainty analysis prepared were examined. To uncertainty assessment in this study 5000 times repetition of uncertainty 3 calibration parameter of pollution transferring model by the use of uncertainty algorithm GLUE had happened in river. For this matter of  pollution Transformation Problem breaking a dam was used.  By applying acceptability threshold indicator of total average cubes (SSE) on all the obtained simulations, 1000 top simulations were known as efficient simulations. Considering about 95 percent confidence as high and low bound of uncertainty, and by applying used d-factor and p-factor indicators, 68 and 75 respectively were obtained Which reflects the high level of concentration was observed in 95 percent confidence. Results had showed using GLUE method caused reduction of uncertainty pollution transferring model parameters. Extraction probabilistical charts last corresponding parameter distributed with efficient simulation, parameter (n) as a sensitive and effective parameter on simulation models. And the optimal value obtained for this parameter 0/2477.

کلیدواژه‌ها [English]

  • Shallo water
  • finite volume method
  • probability distribution
  • concentration
اکبرپور،ا.، خراشادی زاده،ا.، علی پرست،م و مهدی زاده،ح. 1391. بررسی اثر مراتب مختلف زمانی و مکانی در مسائل آب­های کم­عمق با روش حجم محدود بر روی شبکه بی‌سازمان مثلثی. نهمین سمینار بین­المللی مهندسی رودخانه، 3 تا 5 بهمن ماه، اهواز.

پوررضا بیلندی،م.، آخوندعلی،ع و قهرمان،ب. 1391. تحلیل عدم قطعیت در برآورد پارامترهای مدل توزیعی بارش-رواناب با کاربرد الگوریتم مونت کارلو- زنجیره مارکف. مجله پژوهش آب ایران. 6. 11: 165-173.

جوادی،م.، سلیمانی،م و رفیعی،ا. 1391. ارزیابی مدل­های WASP و ROSS3 برای شبیه­سازی گسترش و پخش آلودگی نفتی در رودخانه­ها. همایش ملی جریان و آلودگی آب، دانشگاه تهران.

حیدری،ع.، ثقفیان،ب و مکنون،ر. 1383. شبیه­سازی هیدروگراف سیل بر اساس عدم قطعیت پارامترهای مدل بارش- رواناب، مجله علمی پژوهشی استقلال. 23.2: 111- 93.

شمسایی،ا و وثوقی،ح. 1384. شبیه­سازی عددی جریان با روش حجم محدود بی­سازمان. نشریه فنی و مهندسی مدرس. 23: 67-75.

عظیمیان،ا. 1383. دینامیک سیالات محاسباتی برای مهندسان. انتشارات دانشگاه صنعتی اصفهان، چاپ دوم، جلدهای اول و دوم، 508 و 590 صفحه.

علی پرست،م. 1383. مدلسازی فیزیکی و عددی جریان و انتقال رسوب در سدهای انحرافی. پایان­نامه کارشناسی ارشد، دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران). 125 صفحه.

Aliparast,M. 2009. Two-dimensional finite volume method for dam-break flow simulation. International Journal of Sediment Research. 24.1: 99-107.

Arnold,J.G., Williams,J.R., Griggs,R.H and Sammons,N.B. 1990. A basin scale simulation model for soil and water resources management. 58.1:341-356.

Bermudez,A and Vazquez,M.E. 1994. Upwind methods for hyperbolic conservation laws with source terms. Computational Fluids 23: 1049-1071.

Beven,K.J and Binley,A. 1993. The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes. 6.3: 279-298.

Campbell,E.P., Cox,D.R and Bates,B.C. 1990. A bayesian approach to parameter estimation and pooling in nonlinear flood event models. Water Resources Research. 35.1: 83-98.

Leveque,R. 2004. Finite Volume Methods for   Hyperbolic Problems. Cambridge University Press Pub, UK.

Li,S and Duffy,C. 2012. Fully-Coupled Modeling of Shallow Water Flow and pollutant Transport on Unstructured Grids. Procedia Enviromental Sciences. 13: 2098-2121.

Toro,F.E. 2001. Shock-capturing Methods for Free-surface Shallow Flows. John Wiley and Sons, Chichester, England.

Vazquez-Cendon,M.E. 1999. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. Journal of Computational Physics. 148.2: 497-526.

Xiong,L and O’Connor,K.M. 2008. An empirical method to improve the prediction limits of the GLUE methodology in rainfall–runoff modeling. Journal of Hydrology. 349: 115-124.

Yoon,T and Kang,S. 2004. Finite volume model for two-dimensional shallow water flows on unstructured grids. Journal of Hydraulic Engineering. 130.7: 678-688.

Yoon,H,T., ASCE.and Koo Kang,S. 2004. Finite Volume Model for Two-DimensionalShallow Water Flows on Unstructured Grids.journal of hydraulic engineering, asce, 678.